DOI QR코드

DOI QR Code

Development of a 30 kW Hydrogen-Fueled Micromix Combustor for Research

연구용 30 kW 수소 전소 마이크로믹스 연소기 개발

  • Seojun Ock (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Minsu Kim (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Suhyeon Park (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 옥서준 (한국항공대학교, 항공우주및기계공학부) ;
  • 김민수 (한국항공대학교, 항공우주및기계공학부) ;
  • 박수현 (한국항공대학교, 항공우주및기계공학부)
  • Received : 2023.10.21
  • Accepted : 2023.11.15
  • Published : 2023.12.31

Abstract

Hydrogen-fueled gas turbines are a promising technology that can resolve the carbon dioxide emission issue as future aviation propulsion engines and carbon-free power generations. To achieve high efficiency and stability of gas turbines using 100% hydrogen as fuel, an innovative design of combustor systems is necessary to consider the characteristics of hydrogen, which are different from those of conventional hydrocarbon fuels. Micromix is a combustor design method, which aims to terminate the reaction quickly by intense mixing of fuel and air, consequently reducing NOx and increasing the stability. In this paper, we examine the principles and design process of micromix combustors as a pure-hydrogen combustion technology, and we introduce a design of a 30 kW micromix hydrogen combustor for research.

수소 가스터빈은 미래 항공 추진 기관과 무탄소 발전 동력원으로 이산화탄소 배출 문제에 대응할 수 있는 유망한 기술이다. 100% 수소를 연료로 사용하는 가스터빈을 위해서는 기존 탄화수소 연료와 다른 수소의 특성을 고려하여 효율과 안정성이 높은 혁신적인 연소기 시스템을 설계할 필요가 있다. 마이크로믹스는 연료와 공기를 강하게 혼합하여 반응이 빠르게 종료되도록 함으로써 질소산화물을 저감하고 안정성을 높이도록 하는 연소기 설계 방식이다. 본 논문에서는 수소 전소 기술로서 마이크로믹스 방식 연소기의 원리와 설계 방법을 살펴보고, 연구용 30 kW 마이크로믹스 수소 연소기 설계안을 소개한다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (과제번호: 2022R1A6A1A03056784). 또한, 이 논문은 한국항공대학교 2023년 재단 기금 연구과제 연구비를 제공받아 수행되었음.

References

  1. J. Y. Kim and T. E. Lee, "A Case Study on the Use of Low-Carbon Energy for Korean Energy Policy," Korea Energy Economics Institute Regular Research Report, pp. 1-77, 2021.
  2. D. Kim, "Review on the Development Trend of Hydrogen Gas Turbine Combustion Technology," Journal of The Korean Society of Combustion, 24(4), pp. 1-10, 2019. https://doi.org/10.15231/jksc.2019.24.4.001
  3. The Boeing Company, 2022 Sustainability Report, 2022.
  4. D. Kim, "Hydrogen turbine combustion technology," Journal of the KSME, 62(3), pp. 43-49, 2022.
  5. J. Kim, et al. "Hydrogen Combustion Gas Turbine of Hanwha Aerospace," Proceedings of the KFMA Annual Meeting, pp. 5-6, 2021.
  6. M. Kim, et al. "Development of Eco-friendly Combustor for Hydrogen Gas Turbine," Proceedings of the KFMA Annual Meeting, pp. 62-64, 2021.
  7. J. Hwang, et al. "A Study on the Hydrogen Combustor with Swirl Nozzles." Journal of The Korean Society of Combustion, 27(4) pp. 11-19, 2022. https://doi.org/10.15231/jksc.2022.27.4.011
  8. Y. Song, "Hydrogen co-firing turbine conversion through gas turbine retrofit," Journal of the KSME, 62(3), pp. 38-42, 2022.
  9. Y. Shin, et al. "Study on Combustion Characteristics of Multi-tube H2 Nozzles ." Journal of The Korean Society of Combustion, 28(2), pp. 57-66, 2023. https://doi.org/10.15231/jksc.2023.28.2.057
  10. H. Kim, et al. "A Review of Carbon Neutral Gas Turbine Combustion Technology," Journal of The Korean Society of Combustion, 27(2), pp. 14-38, 2022. https://doi.org/10.15231/jksc.2022.27.2.014
  11. J. Goldmeer. Power to gas: Hydrogen for power generation, GE Power, 2019.
  12. S. R. Turns. Introduction to combustion, vol. 287. McGraw-Hill Companies New York, NY, USA, 1996.
  13. W. J. Lee, et al. "The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor," KHNES, vol. 33, no. 6, pp. 776-785, 2022. https://doi.org/10.7316/KHNES.2022.33.6.776
  14. Y. Joo, et al. "Hydrogen Enriched Gas Turbine: Core Technologies and R&D Trend," Journal of Hydrogen and New Energy, vol. 31, no. 4, pp. 351-362, 2020. https://doi.org/10.7316/KHNES.2020.31.4.351
  15. B. Khandelwal, et al. "Hydrogen powered aircraft: The future of air transport." Progress in Aerospace Sciences, 60, pp. 45-59, 2013. https://doi.org/10.1016/j.paerosci.2012.12.002
  16. C. Marek, et al. "Low emission hydrogen combustors for gas turbines using lean direct injection." 41st AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. 2005.
  17. G. Dahl, and F. Suttrop. "Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines." International Journal of Hydrogen Energy, 23(8), pp. 695-704, 1998. https://doi.org/10.1016/S0360-3199(97)00115-8
  18. P. Agarwal, et al. "Injector design space exploration for an ultra-low NOx hydrogen micromix combustion system." Turbo Expo: Power for Land, Sea, and Air. Vol. 58608. American Society of Mechanical Engineers, 2019.
  19. A. H. Ayed, et al. "Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine." Propulsion and Power Research, 4(3), pp. 123-131, 2015. https://doi.org/10.1016/j.jppr.2015.07.005
  20. A. H. Ayed. Numerical Characterization and Development of the Dry Low NOx High Hydrogen Content Fuel Micromix Combustion for Gas Turbine Applications, University of Hyogo, 2017.
  21. HH-W. Funke, et al. "An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications," International Journal of Hydrogen Energy, 44(13), pp. 6978-6990, 2019. https://doi.org/10.1016/j.ijhydene.2019.01.161
  22. A. Giannouloudis, et al. "On the development of an experimental rig for hydrogen micromix combustion testing." Proceedings of the 10th European Combustion Meeting, Naples, Italy, April 2021.
  23. X. Sun, et al. "Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics." Turbo Expo: Power for Land, Sea, and Air. Vol. 84119. American Society of Mechanical Engineers, p. V003T03A015, 2020.
  24. G. Lopez-Ruiz, et al. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach." Energy 236, p. 121456, 2021.
  25. G. Lopez-Ruiz, et al. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems." Energy 270, p. 126882, 2023.
  26. A. H. Lefebvre, and D. R. Ballal. Gas turbine combustion: alternative fuels and emissions. CRC press, 2010