DOI QR코드

DOI QR Code

Pt(1)-Fe(30)/MCM-41 촉매상에서 수소 제조를 위한 메탄의 분해 반응에서 조촉매 Pt의 효과

Effect of Pt as a Promoter in Decomposition of CH4 to Hydrogen over Pt(1)-Fe(30)/MCM-41 Catalyst

  • 서호준 (전남대학교 화공생명공학과)
  • Ho Joon Seo (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 투고 : 2023.09.28
  • 심사 : 2023.11.16
  • 발행 : 2023.12.10

초록

고정층 상압 유통식 반응기를 사용하여 Pt(1)-Fe(30)/MCM-41와 Fe(30)/MCM-41의 촉매상에서 메탄의 분해 반응을 수행하여 수소의 수율을 구하여 Pt의 효과를 조사하였다. XRD 분석으로 반응 전 Pt(1)-Fe(30)/MCM-41 촉매에서 Fe2O3와 Pt의 결정상이 나타났다. SEM, EDS 분석과 매핑 이미지로부터 촉매 표면상에 Fe, Pt, Si, O의 나노 입자들이 균일하게 분포함을 알 수 있었다. XPS 분석으로 Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ 등의 이온과 O2-, O-의 산소종이 존재함을 알 수 있었고, Fe(30)/MCM-41 촉매에 Pt를 1 wt% 첨가하면 촉매 표면상에서 Fe2p의 원자 백분율이 13.39%에서 16.14%로 증가하고 Pt4f는 1.51%이었다. 수소의 수율은 Fe(30)/MCM-41보다 3.2배 높았다. Pt로부터 Fe로 H2의 스필오버(spillover) 효과로 Fe 입자의 환원을 증가시키고, Fe, Pt와 MCM-41의 적당한 상호작용으로 미세한 나노입자를 촉매 표면상에 균일하게 분산을 증가시켜 수소수율을 향상시켰다.

The effect of Pt was investigated to the catalytic methane decomposition of CH4 to H2 over Pt(1)-Fe(30)/MCM-41 and Fe(30)/MCM-41 using a fixed bed flow reactor under atmosphere. The Fe2O3 and Pt crystal phase behavior of fresh Pt(1)-Fe(30)/MCM-41 were obtained via XRD analysis. SEM, EDS analysis, and mapping were performed to show the uniformed distribution of nano particles such as Fe, Pt, Si, O on the catalyst surface. XPS results showed O2-, O- species and metal ions such as Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ etc. When 1 wt% of Pt was added to Fe(30)/MCM-41, automic percentage of Fe2p increased from 13.39% to 16.14%, and Pt4f was 1.51%. The yield of hydrogen over Pt(1)-Fe(30)/MCM-41 was 3.2 times higher than Fe(30)/MCM-41. The spillover effect of H2 from Pt to Fe increased the reduction of Fe particles and moderate interaction of Fe, Pt and MCM-41 increased the uniform dispersion of fine nanoparticles on the catalyst surface, and improved hydrogen yield.

키워드

참고문헌

  1. H. F. Abbas and W. M. A. W. Daud, Hydrogen production by methane decomposition: A review, Int. J. Hydrog. Energy, 35, 1160-1190 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.036
  2. Y. Yao, X. Liu, D. Hildebrandt, and D. Glasser, Fisher-Tropsch synthesis Using H2/CO/CO2 syngas mixtures over an iron catalyst, Ind. Eng. Chem. Res., 50, 11002-11012 (2011). https://doi.org/10.1021/ie200690y
  3. S. Damyanova, B. Pawelec, K. Arisshtirova, J. L. G. Fierro, C. Sener, and T. Dogu, MCM-41 supported PdNi catalysts for dry reforming of methane, Appl. Catal. B Environ., 92, 250-261 (2009). https://doi.org/10.1016/j.apcatb.2009.07.032
  4. D. A. Kutteri, I-W. Wang, A. Samanta, L. Li, and J. Hu, Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono- and bimetallic 3d transition metal catalysts, Catal. Sci., Technol., 8, 858-869 (2018). https://doi.org/10.1039/C7CY01927K
  5. G. A. Naikoo, F. Arshad, I. U. Hassan, M. A. Tabook, M. Z. Pedram, M. Mustaqeem, H. Tabassum, W. Ahmed, and M. Rezakazemi, Thermocatalytic hydrogen production through decomposition of methane - A review, Front. Chem., 9, 736801- 736824 (2021). https://doi.org/10.3389/fchem.2021.736801
  6. M. Pudukkudy, Z. Yaakob, Q. Jia, and M. S. Takriff, Catalytic decomposition of undiluted methane into hydrogen and Carbon nanotubes over Pt promoted Ni/CeO2 catalysts, New J. Chem., 42, 14843-14856 (2018). https://doi.org/10.1039/C8NJ02842G
  7. S. Karimi, F. Bibak, F. Meshkani, A. Rastegarpanah, J. Deng, Y. Liu, and H. Dai, Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review, Int. J. Hydrog. Energy, 46, 20435-20480 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.160
  8. N. Shah, D. Panjala, and G. P. Huffman, Hydrogen production by catalytic decomposition of methane, Energy Fuels, 15, 1528-1534 (2001). https://doi.org/10.1021/ef0101964
  9. X. S. Zhao, G. Q. Lu, and G. J. Millar, Advances in mesoporous molecular sieve MCM-41, Ind. Eng. Chem. Res., 35, 2075-2090 (1996). https://doi.org/10.1021/ie950702a
  10. Q. Ai, Z. Yuan, R. Huang, C. Yang, G. Jiang, J. Xiong, Z. Huang, and S. Yuan, One-pot co-procipitation synthesis of Fe3O4 nanoparticles embedded in 3D carbonaceous matrix as anode for lithium ion batteries, J. Mater. Sci., 54, 4212-4224 (2019). https://doi.org/10.1007/s10853-018-3141-3