DOI QR코드

DOI QR Code

Adsorption of Glycerol on Hydroxyapatite Enhanced Colloidal Stability in Phosphate Buffered Saline Solution

글리세롤 흡착으로 인산완충식염수에서 콜로이드 안정성이 향상된 수산화인회석 합성

  • Jaun An (Department of Chemistry, Gyeongsang National University) ;
  • Hyebin Choi (Department of Chemistry, Gyeongsang National University) ;
  • Keunyoung Lee (HAP Materials) ;
  • Ki-Young Kwon (Department of Chemistry, Gyeongsang National University)
  • Received : 2023.11.07
  • Accepted : 2023.11.14
  • Published : 2023.12.10

Abstract

The biocompatibility of hydroxyapatite (HAP) has led to its application in various fields. To accomplish practical biological applications, such as drug/gene delivery, the colloidal stability of HAP in phosphate-buffered saline (PBS) is particularly important. In this study, we prepared a glycerol incorporated-HAP (Gly-HAP) by heating HAP in a glycerol environment at 200 ℃. To compare morphology and colloidal stability, HAP prepared at room temperature (RT-HAP) was thermally treated in water at 200 ℃ (H2O-HAP). The heat treatment of HAP in both water and glycerol solutions results in an increase in the crystallinity of HAPs. Due to the low solubility of HAP in glycerol and the adsorption of glycerol on the HAP surface, crystal growth is limited. However, the heat-treated HAP under water increased in size by approximately four times compared to the initial crystallites. Compared to RT-HAP and H2O-HAP, Gly-HAP shows improved colloidal stability in PBS, which originates from the adsorption of glycerol on the HAP surface that inhibits the agglomeration of individual HAP precipitates.

수산화인회석은 생체 적합성이 뛰어나 다양한 분야에 활용이 가능하다. 그 중 약물/유전자 전달과 같은 실용적인 생물학적 응용을 수행하기 위해 인산완충식염수(PBS) 용액 속 수산화인회석의 콜로이드 안정성은 특히 중요하다. 본 연구에서는 글리세롤 용액 하에 수산화인회석을 200 ℃로 열처리하여 글리세롤이 흡착된 수산화인회석(Gly-HAP)을 합성하였다. 이를 상온에서 합성한 수산화인회석(RT-HAP) 및 증류수에서 200 ℃로 열처리된 수산화인회석(H2O-HAP)과 물성 및 콜로이드 안정성을 비교하였다. 증류수와 글리세롤 용액 모두에서 열처리는 수산화인회석의 결정성을 향상시켰다. 하지만 글리세롤에 대한 수산화인회석의 낮은 용해도와 수산화인회석 표면에 글리세롤 분자들의 흡착으로 인해 열처리 과정에서 Gly-HAP의 결정 성장이 제한되었다. 반면에 H2O-HAP는 초기 결정 크기에 비해 약 4배 성장하였다. RT-HAP 및 H2O-HAP과 비교하면, Gly-HAP는 PBS 용액에서 콜로이드 안정성이 향상되었으며, 이는 글리세롤이 수산화인회석 표면에 흡착되어 HAP 결정들의 응집을 억제한 것에 기인한다.

Keywords

Acknowledgement

본 연구는 2022년 교육부의 재원으로 지역대학우수과학자지원사업(NRF-2022R1I1A3071407)과 2020년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설 장비진흥센터와 (2019R1A6C1010042), 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임(S3316896).

References

  1. M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature, 204, 1050-1052 (1964).  https://doi.org/10.1038/2041050a0
  2. W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, 94-117 (1998).  https://doi.org/10.1557/JMR.1998.0015
  3. T. M. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures, Biomaterials, 23, 1283-1293 (2002).  https://doi.org/10.1016/S0142-9612(01)00243-5
  4. D.-M. Liu, Control of pore geometry on influencing the mechanical property of porous hydroxyapatite bioceramic, J. Mater. Sci., 15, 419-421 (1996).  https://doi.org/10.1007/BF00277185
  5. T. M. Chu, J. W. Halloran, S. J. Hollister, and S. E. Feinberg, Hydroxyapatite implants with designed internal architecture, J. Mater. Sci. Mater. Med., 12, 471-478 (2001). https://doi.org/10.1023/A:1011203226053
  6. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004).  https://doi.org/10.1021/ja0488683
  7. A. Corami, S. Mignardi, and V. Ferrini, Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite, J. Colloid Interface Sci., 317, 402-408 (2008).  https://doi.org/10.1016/j.jcis.2007.09.075
  8. K.-Y. Kwon, E. Wang, A. Chung, N. Chang, and S.-W. Lee, Effect of salinity on hydroxyapatite dissolution studied by atomic force microscopy, J. Phys. Chem. C, 113, 3369-3372 (2009). 
  9. K. Y. Kwon, E. Wang, N. Chang, and S. W. Lee, Characterization of the dominant molecular step orientations on hydroxyapatite (100) surfaces, Langmuir, 25, 7205-7208 (2009).  https://doi.org/10.1021/la900824n
  10. J. W. Jaworski, S. Cho, Y. Kim, J. H. Jung, H. S. Jeon, B. K. Min, and K.-Y. Kwon, Hydroxyapatite supported cobalt catalysts for hydrogen generation, J. Colloid Interface Sci., 394, 401-408 (2013).  https://doi.org/10.1016/j.jcis.2012.11.036
  11. D. Kim, Y. Kim, K. Jung, M. Y. Choi, M. Park, B. Y. Lee, T. H. Kim, and K.-Y. Kwon, Ruthenium-incorporated hydroxyapatites for the oxidation of alcohols and amines using molecular oxygen as an oxidant, Bull. Korean. Chem. Soc., 36, 1-2 (2015).  https://doi.org/10.1002/bkcs.10006
  12. E. Pyo, Y. Kim, J. B. Park, and K.-Y. Kwon, A silver-doped hydroxyapatite for an active sunscreen material, Bull. Korean. Chem. Soc., 37, 1395-1396 (2016).  https://doi.org/10.1002/bkcs.10902
  13. X. Jin, J. Zhuang, Z. Zhang, H. Guo, and J. Tan, Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH, J. Colloid Interface Sci., 443, 125-130 (2015).  https://doi.org/10.1016/j.jcis.2014.12.010
  14. R. Gonzalez-McQuire, J.-Y. Chane-Ching, E. Vignaud, A. Lebugle, and S. Mann, Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, J. Mater. Chem., 14, 2277-2281 (2004).  https://doi.org/10.1039/b400317a
  15. H. Zhang and M. W. Grinstaff, Recent advances in glycerol polymers: Chemistry and biomedical applications, Biomaterials, 35, 1906-1924 (2014). 
  16. A. C. Tas, Molten salt synthesis of calcium hydroxyapatite whiskers, J. Am. Ceram. Soc., 84, 295-300 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00653.x