DOI QR코드

DOI QR Code

The Thermal Conductivity Characteristics of Carbon Block with Nano-Diamond

나노다이아몬드가 첨가된 탄소블록의 열전도도 특성

  • Jun Soong Lee (Carbon Composite Design Analysis Technology support Center, Gyengbuk Hybrid Technology Institute) ;
  • Ji Hun Mun (Carbon-Formed Component Commercialization Cerfification Center, Gyengbuk Hybrid Technology Institute) ;
  • Sungwook Joo (Carbon Composite Design Analysis Technology support Center, Gyengbuk Hybrid Technology Institute) ;
  • Seung Uk Lee (Carbon-Formed Component Commercialization Cerfification Center, Gyengbuk Hybrid Technology Institute) ;
  • Min Il Kim (Carbon-Formed Component Commercialization Cerfification Center, Gyengbuk Hybrid Technology Institute)
  • 이준숭 (경북하이브리드부품연구원 탄소복합설계해석기술지원센터) ;
  • 문지훈 (경북하이브리드부품연구원 탄소성형부품상용화인증센터) ;
  • 주성욱 (경북하이브리드부품연구원 탄소복합설계해석기술지원센터) ;
  • 이승욱 (경북하이브리드부품연구원 탄소성형부품상용화인증센터) ;
  • 김민일 (경북하이브리드부품연구원 탄소성형부품상용화인증센터)
  • Received : 2023.11.10
  • Accepted : 2023.11.20
  • Published : 2023.12.10

Abstract

Nano-diamond (ND) was added during the carbon block preparation process to increase the thermal conductivity of the carbon block. Added ND controlled the generated pore of carbon block due to the volatilization of the binder pitch during the carbonization process. The ND was added to the kneading process of coke and binder pitch, and carbon blocks were prepared by pressing and carbonization. As the amount of added ND increased, the ND ratio of the carbon block increased. The added ND made a pass-way for generated gas by volatilizing the binder pitch during the carbonization process, increasing the density of the carbon block and reducing the porosity. The thermal conductivity of the carbon block was improved by increased density, lowered porosity, and the high thermal conductivity of added ND.

탄소블록의 열전도도를 증가시키기 위하여 탄소블록 제조 공정 중 nano-diamond (ND)를 첨가하였다. 첨가된 ND는 탄화 과정에서 바인더 피치의 휘발로 인하여 생성된 탄소블록의 기공을 제어하였다. ND의 첨가는 코크스 및 바인더 피치의 혼련 공정에 추가하였으며, 성형, 탄화를 거쳐 탄소블록을 제조하였다. 첨가된 ND의 양이 증가할수록 탄소블록의 ND 비율이 증가하였다. 첨가된 ND는 탄화 과정에서 바인더 피치의 휘발로 인하여 발생하는 가스의 이동 통로 역할을 하여 탄소블록의 밀도를 높이고, 기공률을 감소시켰다. ND의 첨가를 통하여 높아진 밀도, 낮아진 기공률, ND의 높은 열전도도를 통하여 탄소블록의 열전도도를 향상시킬 수 있었다.

Keywords

Acknowledgement

본 연구는 한국탄소산업진흥원의 2023년 탄소융복합소재부품 실증사업(과제번호 : G2820220600044, 과제명 : 전자기기 부품 가공용 중대형급 고밀도 등방흑연블록 제조기술 실증)의 지원을 받아 연구되었음을 밝히며, 이에 감사드립니다.

References

  1. Z. Yang, G. Cong, B. Liu, Y. Zhang, D. Zhang, X. Wang, J. Li, X. Chen, Z. Liu, and X. Guo, Preparation and characterization of carbon block with coal tar pitch and phenolic resin as mixed binder, Fuel Process. Technol., 243, 107661 (2023).
  2. B. Zhong, G. L. Zhao, X. X. Huang, J. Liu, Z. F. Chai, X. H. Tang, G. W. Wen, and Y. Wu, Binding natural graphite with mesophase pitch: A promising route to future carbon blocks, Mater. Sci. Eng. A, 610, 250-257 (2014). https://doi.org/10.1016/j.msea.2014.05.038
  3. U. Im, J. Kim, B. Lee, D. Peck, and D. Jung, Manufacture of high density carbon blocks by self-sintering coke produced via a two-stage heat treatment of coal tar, Heliyon, 5, e01341 (2019).
  4. W. Feng, M. Qin, and Y. Feng, Toward highly thermally conductive all-carbon composites: Structure control, Carbon, 109, 575-597 (2016). https://doi.org/10.1016/j.carbon.2016.08.059
  5. V. Vasanthi, T. Logu, V. Ramakrishnan, K. Anitha, and K. Sethuraman, Study of electrical conductivity and photoelectric response of liquid phase exfoliated graphene thin film prepared via spray pyrolysis route, Carbon Lett., 30, 417-423 (2020). https://doi.org/10.1007/s42823-019-00111-2
  6. J. H. Cho, J. S. Im, M. I. Kim, Y. Lee, and B. C. Bai, Preparation of petroleum-based binder pitch for manufacturing thermally conductive carbon molded body and comparison with commercial coal-based binder pitch, Carbon Lett., 30, 373-379 (2020). https://doi.org/10.1007/s42823-019-00106-z
  7. T. Wang, Y. Li, S. Sang, Y. Xu, and H. Wang, Effect of pitch powder addition on the microstructure and properties of carbon blocks for blast furnace, Ceram. Int., 45, 634-643 (2019). https://doi.org/10.1016/j.ceramint.2018.09.221
  8. S. Nomura, The effect of binder (coal tar and pitch) on coking pressure, Fuel, 220, 810-816 (2018). https://doi.org/10.1016/j.fuel.2018.01.130
  9. G. Yuan, X Li, Z. Dong, A. Westwood, Z. Cui, Y. Cong, H. Du, and F. Kang, Graphite blocks with preferred orientation and high thermal conductivity, Carbon, 50, 175-182 (2012). https://doi.org/10.1016/j.carbon.2011.08.017
  10. S. Nomura and T. Arima, Influence of binder (coal tar and pitch) addition on coal caking property and coke strength, Fuel Process. Technol., 159, 369-375 (2017). https://doi.org/10.1016/j.fuproc.2017.01.024
  11. C. Guan, Y. Qin, B. Wang, L. Li, M. Wang, C. Lin, X. He, K. Nishimura, J. Yu, J. Yi, and N. Jiang, Highly thermally conductive polymer composites with barnacle-like nano-crystalline Diamond@ Silicon carbide hybrid architecture, Compos. B Eng., 198, 108167 (2020).
  12. T. Hagio, J. Park, Y. Naruse, Y. Goto, Y. Kamimoto, R. Ichino, and T. Bessho, Electrodeposition of nano-diamond/copper composite platings: Improved interfacial adhesion between diamond and copper via formation of silicon carbide on diamond surface, Surf. Coat. Technol., 403, 126322 (2020).
  13. X. Liu, Q. Fu, H. Wang, and Q. Song, Improvement of mechanical property and ablation resistance of carbon/carbon composites by adding nano-diamond particles, Diam. Relat. Mater., 104, 107751 (2020).
  14. L. Saturday, L. Wilson, S. Retterer, N. J. Evans, D. Briggs, P. D. Rack, and N. Lavrik, Thermal conductivity of nano- and microcrystalline diamond films studied by photothermal excitation of cantilever structures, Diam. Relat. Mater., 113, 108279 (2021).
  15. S. Bagheri and N. M. Julkapli, Nano-diamond based photocatalysis for solar hydrogen production, Int. J. Hydrogen Energy, 45, 31538-31554 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.193
  16. S. Lee, S. Lee, and J. Roh, Effect of change in open porosity as a function of uniaxial molding pressure on density improvement after impregnation, J. Korean Powder Metall. Inst., 28, 7-12 (2021). https://doi.org/10.4150/KPMI.2021.28.1.7
  17. A. Rudajevova, F. von Buch, and B. L. Mordike, Thermal diffusivity and thermal conductivity of MgSc alloys, J. Alloys Compd., 292, 27-30 (1999). https://doi.org/10.1016/S0925-8388(99)00444-2
  18. A. R. Kamali, J. Yang, and Q. Sun, Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity, Appl. Surf. Sci., 476, 539-551 (2019). https://doi.org/10.1016/j.apsusc.2019.01.119
  19. M. I. Kim, J. H. Cho, J. U. Hwang, B. C. Bai, and J. S. Im, Preparation of high-crystallinity synthetic graphite from hard carbon-based carbon black, Appl. Phys. A, 127, 156 (2021).
  20. A. Dychalska, P. Popielarski, W. Frankow, K. Fabisiak, K. Paprocki, and M. Szybowicz, Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy, Mater. Sci. Poland, 33, 799-805 (2015). https://doi.org/10.1515/msp-2015-0067
  21. S. Gottlieb, N. Wohrl, S. Schulz, and V. Buck, Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper, Springerplus, 5, 568 (2016).
  22. M. Popov, V. Churkin, A. Kirichenko, V. Denisov, D. Ovsyannikov, B. Kulnitskiy, I. Perezhogin, V. Aksenenkov, and V. Blank, Raman spectra and bulk modulus of nanodiamond in a size interval of 2-5 nm, Nanoscale Res. Lett., 12, 561 (2017).
  23. K. Nakajima, M. Okamura, J. N. Kondo, K. Domen, T. Tatsumi, S. Hayashi, and M. Hara, Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst, Chem. Mater., 21, 186-193 (2009). https://doi.org/10.1021/cm801441c
  24. H. Cheng, X. Li, T. Li, D. Qin, T. Tang, Y. Li, and G. Wang, Electrospun nanofibers with high specific surface area to prepare modified electrodes for electrochemiluminescence detection of azithromycin, J. Nanomater., 2021, 9961663 (2021).
  25. F. Astuti, N. Sari, V. L. Maghfirohtuzzoimah, R. Asih, M. A. Baqiya, and D. Darminto, Study of the formation of amorphous carbon and rGO-like phases from palmyra sugar by variation of calcination temperature, J. Fis. dan Apl., 16, 91-94 (2020). https://doi.org/10.12962/j24604682.v16i2.6706
  26. V. Kuzmin, K. Safiullin, G. Dolgorukov, A. Stanislavovas, E. Alakshin, T. Safin, B. Yavkin, S. Orlinskii, A. Kiiamov, M. Presnyakov, A. Klochkov, and M. Tagirov, Angstrom-scale probing of paramagnetic centers location in nanodiamonds by 3He NMR at low temperatures, Phys. Chem. Chem. Phys., 20, 1476 (2018).
  27. K. G. Mikheev, T. N. Mogileva, A. E. Fateev, N. A. Nunn, O. A. Shenderova, and G. M. Mikheev, Low-power laser graphitization of high pressure-High temperature nanodiamond films, Appl. Sci., 10, 3329 (2020).
  28. C. Calebrese, G. A. Eisman, D. J. Lewis, and L. S. Schadler, Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material, Carbon, 48, 3939-3946 (2010). https://doi.org/10.1016/j.carbon.2010.06.061
  29. M. I. Kim, J. H. Cho, B. C. Bai, and J. S. Im, The control of volume expansion and porosity in carbon block by carbon black (CB) addition for increasing thermal conductivity, Appl. Sci., 10, 6068 (2020).
  30. H. Liu and X. Zhao, Thermal conductivity analysis of high porosity structures with open and closed pores, Int. J. Heat Mass Transf., 183, 122089 (2022).