Acknowledgement
본 연구는 한국탄소산업진흥원의 2023년 탄소융복합소재부품 실증사업(과제번호 : G2820220600044, 과제명 : 전자기기 부품 가공용 중대형급 고밀도 등방흑연블록 제조기술 실증)의 지원을 받아 연구되었음을 밝히며, 이에 감사드립니다.
References
- Z. Yang, G. Cong, B. Liu, Y. Zhang, D. Zhang, X. Wang, J. Li, X. Chen, Z. Liu, and X. Guo, Preparation and characterization of carbon block with coal tar pitch and phenolic resin as mixed binder, Fuel Process. Technol., 243, 107661 (2023).
- B. Zhong, G. L. Zhao, X. X. Huang, J. Liu, Z. F. Chai, X. H. Tang, G. W. Wen, and Y. Wu, Binding natural graphite with mesophase pitch: A promising route to future carbon blocks, Mater. Sci. Eng. A, 610, 250-257 (2014). https://doi.org/10.1016/j.msea.2014.05.038
- U. Im, J. Kim, B. Lee, D. Peck, and D. Jung, Manufacture of high density carbon blocks by self-sintering coke produced via a two-stage heat treatment of coal tar, Heliyon, 5, e01341 (2019).
- W. Feng, M. Qin, and Y. Feng, Toward highly thermally conductive all-carbon composites: Structure control, Carbon, 109, 575-597 (2016). https://doi.org/10.1016/j.carbon.2016.08.059
- V. Vasanthi, T. Logu, V. Ramakrishnan, K. Anitha, and K. Sethuraman, Study of electrical conductivity and photoelectric response of liquid phase exfoliated graphene thin film prepared via spray pyrolysis route, Carbon Lett., 30, 417-423 (2020). https://doi.org/10.1007/s42823-019-00111-2
- J. H. Cho, J. S. Im, M. I. Kim, Y. Lee, and B. C. Bai, Preparation of petroleum-based binder pitch for manufacturing thermally conductive carbon molded body and comparison with commercial coal-based binder pitch, Carbon Lett., 30, 373-379 (2020). https://doi.org/10.1007/s42823-019-00106-z
- T. Wang, Y. Li, S. Sang, Y. Xu, and H. Wang, Effect of pitch powder addition on the microstructure and properties of carbon blocks for blast furnace, Ceram. Int., 45, 634-643 (2019). https://doi.org/10.1016/j.ceramint.2018.09.221
- S. Nomura, The effect of binder (coal tar and pitch) on coking pressure, Fuel, 220, 810-816 (2018). https://doi.org/10.1016/j.fuel.2018.01.130
- G. Yuan, X Li, Z. Dong, A. Westwood, Z. Cui, Y. Cong, H. Du, and F. Kang, Graphite blocks with preferred orientation and high thermal conductivity, Carbon, 50, 175-182 (2012). https://doi.org/10.1016/j.carbon.2011.08.017
- S. Nomura and T. Arima, Influence of binder (coal tar and pitch) addition on coal caking property and coke strength, Fuel Process. Technol., 159, 369-375 (2017). https://doi.org/10.1016/j.fuproc.2017.01.024
- C. Guan, Y. Qin, B. Wang, L. Li, M. Wang, C. Lin, X. He, K. Nishimura, J. Yu, J. Yi, and N. Jiang, Highly thermally conductive polymer composites with barnacle-like nano-crystalline Diamond@ Silicon carbide hybrid architecture, Compos. B Eng., 198, 108167 (2020).
- T. Hagio, J. Park, Y. Naruse, Y. Goto, Y. Kamimoto, R. Ichino, and T. Bessho, Electrodeposition of nano-diamond/copper composite platings: Improved interfacial adhesion between diamond and copper via formation of silicon carbide on diamond surface, Surf. Coat. Technol., 403, 126322 (2020).
- X. Liu, Q. Fu, H. Wang, and Q. Song, Improvement of mechanical property and ablation resistance of carbon/carbon composites by adding nano-diamond particles, Diam. Relat. Mater., 104, 107751 (2020).
- L. Saturday, L. Wilson, S. Retterer, N. J. Evans, D. Briggs, P. D. Rack, and N. Lavrik, Thermal conductivity of nano- and microcrystalline diamond films studied by photothermal excitation of cantilever structures, Diam. Relat. Mater., 113, 108279 (2021).
- S. Bagheri and N. M. Julkapli, Nano-diamond based photocatalysis for solar hydrogen production, Int. J. Hydrogen Energy, 45, 31538-31554 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.193
- S. Lee, S. Lee, and J. Roh, Effect of change in open porosity as a function of uniaxial molding pressure on density improvement after impregnation, J. Korean Powder Metall. Inst., 28, 7-12 (2021). https://doi.org/10.4150/KPMI.2021.28.1.7
- A. Rudajevova, F. von Buch, and B. L. Mordike, Thermal diffusivity and thermal conductivity of MgSc alloys, J. Alloys Compd., 292, 27-30 (1999). https://doi.org/10.1016/S0925-8388(99)00444-2
- A. R. Kamali, J. Yang, and Q. Sun, Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity, Appl. Surf. Sci., 476, 539-551 (2019). https://doi.org/10.1016/j.apsusc.2019.01.119
- M. I. Kim, J. H. Cho, J. U. Hwang, B. C. Bai, and J. S. Im, Preparation of high-crystallinity synthetic graphite from hard carbon-based carbon black, Appl. Phys. A, 127, 156 (2021).
- A. Dychalska, P. Popielarski, W. Frankow, K. Fabisiak, K. Paprocki, and M. Szybowicz, Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy, Mater. Sci. Poland, 33, 799-805 (2015). https://doi.org/10.1515/msp-2015-0067
- S. Gottlieb, N. Wohrl, S. Schulz, and V. Buck, Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper, Springerplus, 5, 568 (2016).
- M. Popov, V. Churkin, A. Kirichenko, V. Denisov, D. Ovsyannikov, B. Kulnitskiy, I. Perezhogin, V. Aksenenkov, and V. Blank, Raman spectra and bulk modulus of nanodiamond in a size interval of 2-5 nm, Nanoscale Res. Lett., 12, 561 (2017).
- K. Nakajima, M. Okamura, J. N. Kondo, K. Domen, T. Tatsumi, S. Hayashi, and M. Hara, Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst, Chem. Mater., 21, 186-193 (2009). https://doi.org/10.1021/cm801441c
- H. Cheng, X. Li, T. Li, D. Qin, T. Tang, Y. Li, and G. Wang, Electrospun nanofibers with high specific surface area to prepare modified electrodes for electrochemiluminescence detection of azithromycin, J. Nanomater., 2021, 9961663 (2021).
- F. Astuti, N. Sari, V. L. Maghfirohtuzzoimah, R. Asih, M. A. Baqiya, and D. Darminto, Study of the formation of amorphous carbon and rGO-like phases from palmyra sugar by variation of calcination temperature, J. Fis. dan Apl., 16, 91-94 (2020). https://doi.org/10.12962/j24604682.v16i2.6706
- V. Kuzmin, K. Safiullin, G. Dolgorukov, A. Stanislavovas, E. Alakshin, T. Safin, B. Yavkin, S. Orlinskii, A. Kiiamov, M. Presnyakov, A. Klochkov, and M. Tagirov, Angstrom-scale probing of paramagnetic centers location in nanodiamonds by 3He NMR at low temperatures, Phys. Chem. Chem. Phys., 20, 1476 (2018).
- K. G. Mikheev, T. N. Mogileva, A. E. Fateev, N. A. Nunn, O. A. Shenderova, and G. M. Mikheev, Low-power laser graphitization of high pressure-High temperature nanodiamond films, Appl. Sci., 10, 3329 (2020).
- C. Calebrese, G. A. Eisman, D. J. Lewis, and L. S. Schadler, Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material, Carbon, 48, 3939-3946 (2010). https://doi.org/10.1016/j.carbon.2010.06.061
- M. I. Kim, J. H. Cho, B. C. Bai, and J. S. Im, The control of volume expansion and porosity in carbon block by carbon black (CB) addition for increasing thermal conductivity, Appl. Sci., 10, 6068 (2020).
- H. Liu and X. Zhao, Thermal conductivity analysis of high porosity structures with open and closed pores, Int. J. Heat Mass Transf., 183, 122089 (2022).