DOI QR코드

DOI QR Code

돼지 뼈로부터 제조된 활성탄소의 기공구조 및 이종원소가 이산화탄소 흡착에 미치는 영향

Effect of Pore Structure and Heteroelements on Carbon Dioxide Adsorption of Activated Carbon Prepared from Pig Bone

  • 정서경 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 민충기 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 하나은 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Seo Gyeong Jeong (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Chaehun Lim (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Seongjae Myeong (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Chung Gi Min (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Naeun Ha (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Young-Seak Lee (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
  • 투고 : 2023.08.11
  • 심사 : 2023.09.14
  • 발행 : 2023.12.10

초록

본 연구는 돼지 뼈 기반의 바이오매스를 가지고 새로운 흡착재의 활용가능성을 조사하였다. 이를 위하여 돼지 뼈 기반 활성탄소(pig bone based activated carbon, PAC)의 물리화학적 특성을 확인하고 이산화탄소 흡착 성능을 고찰하였다. 활성화제로 KOH를 사용하였으며, 활성화 온도가 증가할수록 비표면적이 증가하며 이산화탄소의 흡착 효율도 증가하였다. 800 ℃에서 활성화된 샘플은 1208.7 m2/g로 가장 큰 비표면적을 나타내었으며, 273 K, 1 bar에서 3.33 mmol/g로 높은 이산화탄소 흡착 효율을 보였다. 그러나 활성화 온도가 900 ℃ 이상인 조건에서는 결정성의 변화 및 과활성화로 인하여 비표면적과 이산화탄소 흡착 효율이 감소하였다. 한편 이상흡착용액이론으로 그 선택도 계산을 수행하였을 때, 273 K, 0.8 bar 이하에서 PAC-900 샘플이 가장 좋은 선택도를 보였다. 이러한 결과는 273 K에서의 이산화탄소/질소 흡착은 900 ℃에서 돼지 뼈가 활성화될 때 탄산염이 분해됨으로써 형성된 하이드록시아파타이트의 이산화탄소 흡착성과 그 결정성으로 인해 높은 선택도가 얻어진 것으로 판단된다.

This study investigated the possibility of new adsorbent materials made from pig bone-based biomass. To this end, the properties of pig bone-based activated carbon (PAC) prepared from animal biomass were investigated, and its carbon dioxide adsorption performance was examined. KOH was used as the activation agent, and the specific surface area increased with increasing activation temperature, and the adsorption efficiency of carbon dioxide also increased. The sample activated at 800 ℃ exhibited the largest specific surface area of 1208.7 m2/g and the highest CO2 adsorption efficiency of 3.33 mmol/g at 273 K, 1 bar. However, the specific surface area and the CO2 adsorption efficiency decreased at activation temperatures above 900 ℃ due to crystallinity changes and overactivation. On the other hand, when the selectivity was calculated using the ideal adsorption solution theory, PAC-900 samples at 273 K and below 0.8 bar showed the best selectivity. These results suggest that the high selectivity of carbon dioxide/nitrogen adsorption at 273 K is due to the carbon dioxide adsorption capacity of hydroxyapatite formed by the decomposition of carbonate when pig bone is activated at 900 ℃ and its crystallinity.

키워드

과제정보

본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

참고문헌

  1. M. Dadkhah andJ. M. Tulliani, Nanostructured metal oxide semiconductors towards greenhouse gas detection, Chemosensors, 10, 57 (2022). 
  2. C. G. Min, C. Lim, S. G. Jeong, S. Myeong, and Y.-S. Lee, Improving CO2 adsorption performance of activated carbons treated by plasma reaction with tetrafluoromethane, Appl. Chem. Eng., 34, 170-174 (2023). 
  3. B. C. Bai, E. A. Kim, C. W. Lee, Y. S. Lee, and J. S. Im, Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption, Appl. Surf. Sci., 353, 158-164 (2015).  https://doi.org/10.1016/j.apsusc.2015.06.046
  4. A. Jomekian and B. Bazooyar, Activated carbon from municipal waste for enhanced CO2/CH4 membrane separation: Experimental, modeling and simulation, Korean J. Chem. Eng., 40, 2102-2118 (2023).  https://doi.org/10.1007/s11814-023-1493-0
  5. M. Oschatz and M. Antonietti, A search for selectivity to enable CO 2 capture with porous adsorbents, Energy Environ. Sci., 11, 57-70 (2018).  https://doi.org/10.1039/C7EE02110K
  6. B. Zhang, Z. Huang, P. Liu, J. Liu, and M. Gu, Influence of pore structure of granular activated carbon prepared from anthracite on the adsorption of CO2, CH4 and N2, Korean J. Chem. Eng., 39, 724-735 (2022).  https://doi.org/10.1007/s11814-021-0948-4
  7. V. Presser, J. McDonough, S. H. Yeon, and Y. Gogotsi, Effect of pore size on carbon dioxide sorption by carbide derived carbon, Energy Environ. Sci., 4, 3059-3066 (2011).  https://doi.org/10.1039/c1ee01176f
  8. Y. J. Choi, Y.-S. Lee, and J. S. Im, Effect of pore structure of activated carbon fiber on mechanical properties, Appl. Chem. Eng., 29, 318-324 (2018). 
  9. R. H. Hesas, A. Arami-Niya, W. M. A. W. Daud, and J. N. Sahu, Microwave-assisted production of activated carbons from oil palm shell in the presence of CO2 or N2 for CO2 adsorption, J. Ind. Eng. Chem., 24, 196-205 (2015).  https://doi.org/10.1016/j.jiec.2014.09.029
  10. K.-M. Lee and Y.-M. Jo, Adsorption characteristics of chemically modified sorbents for carbon dioxide, J. Ind. Eng. Chem., 19, 533-538 (2008). 
  11. H. Wang, G. Qiu, Y. Niu, L. Chen, Y. Li, S. Guo, Y. Zhang, W. Jianjun, and F. Guo, Hierarchical porous composites derived from spent tire char for CO2 capture: KN co-doped, process intensification and thermodynamic analysis, J. Ind. Eng. Chem., 125, 410-420 (2023).  https://doi.org/10.1016/j.jiec.2023.05.049
  12. J. S. Im, S. J. Park, and Y. S. Lee, The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity. Int. J. Hydrog., 34, 1423-1428 (2009).  https://doi.org/10.1016/j.ijhydene.2008.11.054
  13. M. Gohain, K. Laskar, A. K. Paul, N. Daimary, M. Maharana, I. K. Goswami, A. Hazarika, U. Bora, and D. Deka, Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C-C bond formation, Renew. Energy, 147, 541-555 (2020).  https://doi.org/10.1016/j.renene.2019.09.016
  14. M. Gohain, K. Laskar, H. Phukon, U. Bora, D. Kalita, and D. Deka, Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves, Waste Manage., 102, 212-221 (2020).  https://doi.org/10.1016/j.wasman.2019.10.049
  15. Y. Wang, M. Zhang, X. Shen, H. Wang, H. Wang, K. Xia, Z. Yin, and Y. Zhang, Biomass-derived carbon materials: Controllable preparation and versatile applications, Small, 17, 2008079 (2021). 
  16. A. Gupta, P.D. Armatis, P. Sabharwall, B. M. Fronk, and V. Utgikar, Thermodynamics of Ca(OH)2/CaO reversible reaction: Refinement of reaction equilibrium and implications for operation of chemical heat pump, Chem. Eng. Sci., 230, 116227 (2021). 
  17. C. Lim, S.G. Jeong, S. Ha, N. Ha, S. Myeong, and Y. S. Lee, Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition, J. Ind. Eng. Chem., 124, 201-210 (2023).  https://doi.org/10.1016/j.jiec.2023.04.008
  18. F. Peters, K. Schwarz, and M. Epple, The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochim. Acta, 1-2, 131-138 (2000).  https://doi.org/10.1016/S0040-6031(00)00554-2
  19. C. Cazorla, S. A. Shevlin, and Z. X. Guo, Calcium-based functionalization of carbon materials for CO2 capture: a first-principles computational study, J. Phys. Chem. C, 115, 10990-10995 (2011). 
  20. M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, and H. Figueiredo, Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone, Ceram. Int., 36, 2383-2393 (2010).  https://doi.org/10.1016/j.ceramint.2010.07.016
  21. Achanai Buasri, Thaweethong Inkaew, Laorrut Kodephun, Wipada Yenying, and Vorrada Loryuenyong, Natural hydroxyapatite (NHAp) derived from pork bone as a renewable catalyst for biodiesel production via microwave irradiation, Key Eng., 659, 216-220 (2015).  https://doi.org/10.4028/www.scientific.net/KEM.659.216
  22. J. Ruiz, D. Moreno, H. Copete, F. Vargas, and M. E. Lopez, Calcium phosphate cements improved by addition of carbonated Hydroxyapatite type B, Bol. Soc. Esp. Ceram. Vidr., 62, 315-328 (2022).  https://doi.org/10.1016/j.bsecv.2022.05.002
  23. L. D. Mkukuma, J. M. S. Skakle, I. R. Gibson, C. T. Imrie, R. M. Aspden, and D. W. L. Hukins, Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety pled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy, Calcif. Tissue Int., 75, 321-328 (2004).  https://doi.org/10.1007/s00223-004-0199-5
  24. H. Liu, X. Lu, L. Liu, J. Wang, P. Wang, P. Gao, T. Ren, G. Tian, and D. Wang, D. Application of amine-loaded activated carbon fiber in CO2 capture and separation, Korean J. Chem. Eng., 39, 2513-2522 (2022).  https://doi.org/10.1007/s11814-022-1106-3
  25. A. Garcia and J. Carlos, The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3, Chem. Eng. J., 90, 303-306 (2002).  https://doi.org/10.1016/S1385-8947(02)00126-2
  26. S.-K. Kam, K.-H. Kang, and M.-G. Lee, Characteristics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28, 649-654 (2017). 
  27. C. Lim, K. H. Kim, D. An, and Y. S. Lee, Thermal conductivity enhancement of polyimide film induced from exfoliated graphene prepared by electrostatic discharge method, Appl. Chem. Eng., 32, 143-148 (2021). 
  28. D. Kim, C. Lim, S. Kim, and Y. S. Lee, Fabrication and the electrochemical characteristics of petroleum residue-based anode materials, Appl. Chem. Eng., 33, 496-501 (2022). 
  29. S. E. Etok, E. V.-Jones, T. J. Wess, J. C. Hiller, C. A. Maxwell, K. D. Rogers, D. A. C. Manning, M. L. White, E. L.-Capel, M. J. Collins, M. Buckley, K. E. H. Penkman, and S. L. Woodgate, Structural and chemical changes of thermally treated bone apatite, J. Mater. Sci., 42, 9807-9816 (2007).  https://doi.org/10.1007/s10853-007-1993-z
  30. M. M. Rahman, M. Muttakin, A. Pal, A. Z. Shafiullah, and B. B. Saha, A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms, Energies, 12, 4565 (2019). 
  31. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases, Powder Metall. Met. Ceram., 56, 504-511 (2018).  https://doi.org/10.1007/s11106-018-9922-z
  32. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. R.-Reinoso, J. Rouquerol, K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051-1069 (2015).  https://doi.org/10.1515/pac-2014-1117
  33. N. Hwang and A. R. Barron, BET surface area analysis of nanoparticles, The connexions project, 1-11 (2011). 
  34. H. Gheisari, E. Karamian, and M. Abdellahi, A novel hydroxyapatite -Hardystonite nanocomposite ceramic, Ceram. Int., 41, 5967-5975 (2015).  https://doi.org/10.1016/j.ceramint.2015.01.033
  35. Y. Yu, R. Wu, and M. Clark, Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell, J. Colloid Interface Sci., 350, 538-543 (2010).  https://doi.org/10.1016/j.jcis.2010.06.033
  36. C. Lim, C. H. Kwak, S. G. Jeong, D. Kim, and Y. S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2023)  https://doi.org/10.1007/s42823-022-00410-1
  37. F. S. Souza, M. J. S. Matos, B. R. L. Galvao, A. F. C. Arapiraca, S. N. da Silva, and I. P. Pinheiro, Adsorption of CO2 on biphasic and amorphous calcium phosphates: An experimental and theoretical analysis, Chem. Phys. Lett., 714, 143-148 (2019)  https://doi.org/10.1016/j.cplett.2018.10.080
  38. Z. H. Cheng, A. Yasukawa, K. Kandori, and T. Ishikawa, FTIR study of adsorption of CO2 on nonstoichiometric calcium hydroxyapatite, Langmuir, 14, 6681-6686 (1998).  https://doi.org/10.1021/la980339n