Acknowledgement
본 연구는 한국연구재단 생애첫연구사업 (NRF-2017R1C1B5018325) 지원에 의하여 수행되었음.
References
- J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrog. Energy, 44, 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
- B. L. Salvi and K. A. Subramanian, Sustainable development of road transportation sector using hydrogen energy system, Renew. Sustain. Energy Rev., 51, 1132-1155 (2015). https://doi.org/10.1016/j.rser.2015.07.030
- Global Hydrogen Review 2022, Glob. Hydrog. Rev. 2022 (2022).
- M. A. Pellow, C. J. M. Emmott, C. J. Barnhart, and S. M. Benson, Hydrogen or batteries for grid storage? A net energy analysis, Energy Environ. Sci., 8, 1938-1952 (2015). https://doi.org/10.1039/C4EE04041D
- J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert, and T. Tynjala, Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation, Appl. Energy, 257, (2020).
- S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, Current status, research trends, and challenges in water electrolysis science and technology, Int. J. Hydrogen Energy, 45, 26036-26058 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.109
- M. El-Shafie, Hydrogen production by water electrolysis technologies: A review, Results Eng., 20, 101426 (2023).
- A. Buttler and H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renew. Sustain. Energy Rev., 82, 2440-2454 (2018). https://doi.org/10.1016/j.rser.2017.09.003
- H. Lee, B. Lee, M. Byun, and H. Lim, Economic and environmental analysis for PEM water electrolysis based on replacement moment and renewable electricity resources, Energy Convers. Manag., 224, 113477 (2020).
- M. N. I. Salehmin, T. Husaini, J. Goh, and A. B. Sulong, High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production, Energy Convers. Manag., 268, 115985 (2022).
- M. David, C. Ocampo-Martinez, and R. Sanchez-Pena, Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23, 392-403 (2019). https://doi.org/10.1016/j.est.2019.03.001
- D. Henkensmeier, M. Najibah, C. Harms, J. Zitka, J. Hnat, and K. Bouzek, Overview: state-of-the art commercial membranes for anion exchange membrane water electrolysis, J. Electrochem. Energy Convers. Storage, 18, (2021).
- IEA (2021), Hydrogen, IEA, Paris Https://Www.Iea.Org/Reports/Hydrogen (n.d.).
- F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, and P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis, ChemSusChem, 9, 962-972 (2016). https://doi.org/10.1002/cssc.201501581
- H. K. Abdel-Aal, K. M. Zohdy, and M. A. Kareem, Hydrogen production using sea water electrolysis, Open Fuel Cells J., 3, 1-7 (2010). https://doi.org/10.2174/1875932701003010001
- R. Balaji, B. S. Kannan, J. Lakshmi, N. Senthil, S. Vasudevan, G. Sozhan, A. K. Shukla, and S. Ravichandran, An alternative approach to selective sea water oxidation for hydrogen production, Electrochem. Commun., 11, 1700-1702 (2009). https://doi.org/10.1016/j.elecom.2009.06.022
- P. Li, S. Wang, I. A. Samo, X. Zhang, Z. Wang, C. Wang, Y. Li, Y. Du, Y. Zhong, C. Cheng, W. Xu, X. Liu, Y. Kuang, Z. Lu, and X. Sun, Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production, Research, 2020, 1-9 (2020). https://doi.org/10.34133/2020/2872141
- F. T. Mackenzie, R. H. Byrne, and A. C. Duxbury, Seawater | Composition, Properties, Distribution, & Facts, Encyclopedia Britannica, Accessed 5 Oct. 2023, https://www.britannica.com/science/seawater.
- Y. Chen and R. Compton, Direct electrochemical analysis in seawater: evaluation of chloride and bromide detection, Chemosensors, 11, (2023).
- Q. Wang, J. Wu, G. Zhao, Y. Huang, Z. Wang, H. Zheng, Y. Zhou, Y. Ye, and R. Ghomashchi, Monitor application of multi-electrochemical sensor in extracting bromine from seawater, R. Soc. Open Sci., 6, (2019).
- L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, and Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis, Nat. Commun., 10, 1-10 (2019). https://doi.org/10.1038/s41467-018-07882-8
- Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, and B. Dong, Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting, ACS Appl. Energy Mater., 2, 3910-3917 (2019). https://doi.org/10.1021/acsaem.9b00599
- C. Carre, A. Zanibellato, M. Jeannin, R. Sabot, P. Gunkel-Grillon, and A. Serres, Electrochemical calcareous deposition in seawater. A review, Environ. Chem. Lett., 18, 1193-1208 (2020). https://doi.org/10.1007/s10311-020-01002-z
- A. V. Takaloo, M. R. Daroonparvar, M. M. Atabaki, and K. Mokhtar, Corrosion behavior of heat treated nickel-aluminum bronze alloy in artificial seawater, Mater. Sci. Appl., 2, 1542-1555 (2011). https://doi.org/10.4236/msa.2011.211207
- J. S. Ko, J. K. Johnson, P. I. Johnson, and Z. Xia, Decoupling oxygen and chlorine evolution reactions in seawater using iridium-based electrocatalysts, ChemCatChem, 12, 4526-4532 (2020). https://doi.org/10.1002/cctc.202000653
- S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen, M. Li, H. Zhang, Q. Wu, J. Guo, X. Feng, Z. Chen, and Y. Pan, Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis, ACS Appl. Mater. Interfaces, 14, 15250-15258 (2022). https://doi.org/10.1021/acsami.2c00652
- Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, and S. Z. Qiao, Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis, Adv. Energy Mater., 8, 1-9 (2018).
- J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang, R. Kuliiev, N. Orlovskaya, M. Gu, Y. Du, G. Wang, and Y. Yang, Dual-doping and synergism toward high-performance seawater electrolysis, Adv. Mater., 33, 1-10 (2021).
- H. J. Song, H. Yoon, B. Ju, D. Y. Lee, and D. W. Kim, Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1-xFexP2O7 nanoparticles for alkaline seawater electrolysis, ACS Catal., 10, 702-709 (2020). https://doi.org/10.1021/acscatal.9b04231
- L. Wu, L. Yu, B. McElhenny, X. Xing, D. Luo, F. Zhang, J. Bao, S. Chen, and Z. Ren, Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis, Appl. Catal. B Environ., 294, 120256 (2021).
- L. Yang, Y. Zhao, L. Zhu, and D. Xia, Rational construction of grille structured P-CoZnO-Cu2SeS/NF composite electrocatalyst for boosting seawater electrolysis and corrosion resistance, Appl. Surf. Sci., 631, 157541 (2023).
- L. Yang, D. Lu, L. Zhu, and D. Xia, Construction of Mo doped CoMoCH-Cu2SeS/NF composite electrocatalyst with high catalytic activity and corrosion resistance in seawater electrolysis: A case study on cleaner energy, J. Clean. Prod., 413, 137462 (2023).
- C. Feng, M. Chen, Y. Zhou, Z. Xie, X. Li, P. Xiaokaiti, Y. Kansha, A. Abudula, and G. Guan, High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis, J. Colloid Interface Sci., 645, 724-734 (2023). https://doi.org/10.1016/j.jcis.2023.04.172
- S. Song, Y. Wang, X. Tian, F. Sun, X. Liu, Y. Yuan, W. Li, and J. Zang, S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis, J. Colloid Interface Sci., 633, 668-678 (2023). https://doi.org/10.1016/j.jcis.2022.11.113
- Z. Wang, C. Wang, L. Ye, X. Liu, L. Xin, Y. Yang, L. Wang, W. Hou, Y. Wen, and T. Zhan, MnOxFilm-Coated NiFe-LDH nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation, Inorg. Chem., 61, 15256-15265 (2022). https://doi.org/10.1021/acs.inorgchem.2c02579
- J. Zhu, J. Chi, T. Cui, L. Guo, S. Wu, B. Li, J. Lai, and L. Wang, F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density, Appl. Catal. B Environ., 328, 122487 (2023).
- Y. Li, X. Wu, J. Wang, H. Wei, S. Zhang, S. Zhu, Z. Li, S. Wu, H. Jiang, and Y. Liang, Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting, Electrochim. Acta, 390, 138833 (2021).
- H. Sun, J. Sun, Y. Song, Y. Zhang, Y. Qiu, M. Sun, X. Tian, C. Li, Z. Lv, and L. Zhang, Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis, ACS Appl. Mater. Interfaces, 14, 22061-22070 (2022). https://doi.org/10.1021/acsami.2c01643
- H. Wang, L. Chen, L. Tan, X. Liu, Y. Wen, W. Hou, and T. Zhan, Electrodeposition of NiFe-layered double hydroxide layer on sulfurmodified nickel molybdate nanorods for highly efficient seawater splitting, J. Colloid Interface Sci., 613, 349-358 (2022). https://doi.org/10.1016/j.jcis.2022.01.044
- L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, and Z. Ren, Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting, Adv. Funct. Mater., 31, 2006484 (2021).
- B. Chakraborty, R. Beltran-Suito, V. Hlukhyy, J. Schmidt, P. W. Menezes, and M. Driess, Crystalline copper selenide as a reliable nonnoble electro(pre)catalyst for overall water splitting, ChemSusChem, 13, 3222-3229 (2020). https://doi.org/10.1002/cssc.202000445
- H. He, L. Zeng, X. Peng, Z. Liu, D. Wang, B. Yang, Z. Li, L. Lei, S. Wang, and Y. Hou, Porous cobalt sulfide nanosheets arrays with low valence copper incorporated for boosting alkaline hydrogen evolution via lattice engineering, Chem. Eng. J., 451, 138628 (2022).
- Z. Zhao, J. Sun, and X. Meng, Recent advances in transition metal-based electrocatalysts for seawater electrolysis, Int. J. Energy Res., 46, 17952-17975 (2022). https://doi.org/10.1002/er.8486
- Y. Liu, X. Liang, L. Gu, Y. Zhang, G. D. Li, X. Zou, and J. S. Chen, Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours, Nat. Commun., 9, 1-10 (2018). https://doi.org/10.1038/s41467-017-02088-w
- S. Chen, J. Duan, M. Jaroniec, and S. Z. Qiao, Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction, Adv. Mater., 26, 2925-2930 (2014). https://doi.org/10.1002/adma.201305608
- F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan, and Y. Lin, NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution Reaction, Adv. Energy Mater., 8, 1-11 (2018).
- F. Dionigi and P. Strasser, NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes, Adv. Energy Mater., 6, 1600621 (2016).
- A. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O. L. Trinhammer, J. Rossmeisl, and S. Dahl, Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot, J. Chem. Educ., 89, 1595-1599 (2012). https://doi.org/10.1021/ed200818t
- A. Lam, H. Li, S. Zhang, H. Wang, D. P. Wilkinson, S. Wessel, and T. T. H. Cheng, Ex situ study of chloride contamination on carbon supported Pt catalyst, J. Power Sources, 205, 235-238 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.063
- W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, and S. J. Pennycook, Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis, Adv. Mater., 33, 1-8 (2021).
- L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen, and Z. Ren, Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst, ACS Energy Lett., 5, 2681-2689 (2020).