DOI QR코드

DOI QR Code

Research and Development Trends in Seawater Electrolysis Systems and Catalysts

해수 수전해 시스템 및 촉매 연구 개발 동향

  • Yoonseong Jung (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Tuan Linh Doan (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Ta Nam Nguyen (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Taekeun Kim (Graduate School of Energy Science and Technology, Chungnam National University)
  • 정윤성 (충남대학교 에너지과학기술대학원) ;
  • ;
  • ;
  • 김태근 (충남대학교 에너지과학기술대학원)
  • Received : 2023.10.11
  • Accepted : 2023.10.20
  • Published : 2023.12.10

Abstract

Water electrolysis is undergoing active research as one of the promising technologies for producing effective green hydrogen. Using seawater directly as a raw material for a water electrolysis system can solve the problem of the limitations of existing freshwater raw materials, as seawater accounts for approximately 97% of the water on Earth. At the same time, abundant by-product materials can be obtained, representative examples of which are Cl2, ClO-, Br2, and Mg(OH)2 produced during electrolysis, depending on their composition and pH environment. In order to develop a successful seawater electrolysis system and oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts, it is necessary to understand the causes and consequences of reactions that occur in the seawater environment. Therefore, in this paper, we will investigate the reaction mechanism and characteristics of the seawater electrolysis system as well as the research and development trends of electrochemical catalysts used in anode and cathode electrodes.

물의 전기 분해는 효과적인 그린 수소를 생산하기 위한 유망한 기술 중 하나로서 활발한 연구가 이루어지고 있다. 수전해 시스템의 원료로 해수를 직접 사용하게 되면 지구상에 있는 물의 약 97%를 해수가 차지하고 있으므로, 기존 담수 원료의 제한성에 대한 문제를 해결할 수 있다. 동시에 풍부한 부생 원료를 얻을 수 있는데, 그 성분과 pH 환경에 따라 전기 분해 과정에서 생성되는 Cl2, ClO-, Br2 및 Mg(OH)2 등이 대표적이다. 성공적인 해수 수전해 시스템 개발과 이에 필수적인 산소발생반응(oxygen evolution reaction, OER)과 수소발생반응(hydrogen evolution reaction, HER) 촉매를 개발하기 위해서는 해수 환경에서 일어나는 반응의 원인과 결과에 대해 파악할 필요가 있다. 따라서 본 논문에서는 해수 수전해 시스템의 반응 메커니즘과 특징 및 애노드와 캐소드 전극에 사용되는 전기화학 촉매들의 연구 개발 동향에 대해 살펴보고자 한다.

Keywords

Acknowledgement

본 연구는 한국연구재단 생애첫연구사업 (NRF-2017R1C1B5018325) 지원에 의하여 수행되었음.

References

  1. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrog. Energy, 44, 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  2. B. L. Salvi and K. A. Subramanian, Sustainable development of road transportation sector using hydrogen energy system, Renew. Sustain. Energy Rev., 51, 1132-1155 (2015). https://doi.org/10.1016/j.rser.2015.07.030
  3. Global Hydrogen Review 2022, Glob. Hydrog. Rev. 2022 (2022).
  4. M. A. Pellow, C. J. M. Emmott, C. J. Barnhart, and S. M. Benson, Hydrogen or batteries for grid storage? A net energy analysis, Energy Environ. Sci., 8, 1938-1952 (2015). https://doi.org/10.1039/C4EE04041D
  5. J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert, and T. Tynjala, Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation, Appl. Energy, 257, (2020).
  6. S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, Current status, research trends, and challenges in water electrolysis science and technology, Int. J. Hydrogen Energy, 45, 26036-26058 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.109
  7. M. El-Shafie, Hydrogen production by water electrolysis technologies: A review, Results Eng., 20, 101426 (2023).
  8. A. Buttler and H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renew. Sustain. Energy Rev., 82, 2440-2454 (2018). https://doi.org/10.1016/j.rser.2017.09.003
  9. H. Lee, B. Lee, M. Byun, and H. Lim, Economic and environmental analysis for PEM water electrolysis based on replacement moment and renewable electricity resources, Energy Convers. Manag., 224, 113477 (2020).
  10. M. N. I. Salehmin, T. Husaini, J. Goh, and A. B. Sulong, High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production, Energy Convers. Manag., 268, 115985 (2022).
  11. M. David, C. Ocampo-Martinez, and R. Sanchez-Pena, Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23, 392-403 (2019). https://doi.org/10.1016/j.est.2019.03.001
  12. D. Henkensmeier, M. Najibah, C. Harms, J. Zitka, J. Hnat, and K. Bouzek, Overview: state-of-the art commercial membranes for anion exchange membrane water electrolysis, J. Electrochem. Energy Convers. Storage, 18, (2021).
  13. IEA (2021), Hydrogen, IEA, Paris Https://Www.Iea.Org/Reports/Hydrogen (n.d.).
  14. F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, and P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis, ChemSusChem, 9, 962-972 (2016). https://doi.org/10.1002/cssc.201501581
  15. H. K. Abdel-Aal, K. M. Zohdy, and M. A. Kareem, Hydrogen production using sea water electrolysis, Open Fuel Cells J., 3, 1-7 (2010). https://doi.org/10.2174/1875932701003010001
  16. R. Balaji, B. S. Kannan, J. Lakshmi, N. Senthil, S. Vasudevan, G. Sozhan, A. K. Shukla, and S. Ravichandran, An alternative approach to selective sea water oxidation for hydrogen production, Electrochem. Commun., 11, 1700-1702 (2009). https://doi.org/10.1016/j.elecom.2009.06.022
  17. P. Li, S. Wang, I. A. Samo, X. Zhang, Z. Wang, C. Wang, Y. Li, Y. Du, Y. Zhong, C. Cheng, W. Xu, X. Liu, Y. Kuang, Z. Lu, and X. Sun, Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production, Research, 2020, 1-9 (2020). https://doi.org/10.34133/2020/2872141
  18. F. T. Mackenzie, R. H. Byrne, and A. C. Duxbury, Seawater | Composition, Properties, Distribution, & Facts, Encyclopedia Britannica, Accessed 5 Oct. 2023, https://www.britannica.com/science/seawater.
  19. Y. Chen and R. Compton, Direct electrochemical analysis in seawater: evaluation of chloride and bromide detection, Chemosensors, 11, (2023).
  20. Q. Wang, J. Wu, G. Zhao, Y. Huang, Z. Wang, H. Zheng, Y. Zhou, Y. Ye, and R. Ghomashchi, Monitor application of multi-electrochemical sensor in extracting bromine from seawater, R. Soc. Open Sci., 6, (2019).
  21. L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, and Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis, Nat. Commun., 10, 1-10 (2019). https://doi.org/10.1038/s41467-018-07882-8
  22. Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, and B. Dong, Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting, ACS Appl. Energy Mater., 2, 3910-3917 (2019). https://doi.org/10.1021/acsaem.9b00599
  23. C. Carre, A. Zanibellato, M. Jeannin, R. Sabot, P. Gunkel-Grillon, and A. Serres, Electrochemical calcareous deposition in seawater. A review, Environ. Chem. Lett., 18, 1193-1208 (2020). https://doi.org/10.1007/s10311-020-01002-z
  24. A. V. Takaloo, M. R. Daroonparvar, M. M. Atabaki, and K. Mokhtar, Corrosion behavior of heat treated nickel-aluminum bronze alloy in artificial seawater, Mater. Sci. Appl., 2, 1542-1555 (2011). https://doi.org/10.4236/msa.2011.211207
  25. J. S. Ko, J. K. Johnson, P. I. Johnson, and Z. Xia, Decoupling oxygen and chlorine evolution reactions in seawater using iridium-based electrocatalysts, ChemCatChem, 12, 4526-4532 (2020). https://doi.org/10.1002/cctc.202000653
  26. S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen, M. Li, H. Zhang, Q. Wu, J. Guo, X. Feng, Z. Chen, and Y. Pan, Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis, ACS Appl. Mater. Interfaces, 14, 15250-15258 (2022). https://doi.org/10.1021/acsami.2c00652
  27. Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, and S. Z. Qiao, Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis, Adv. Energy Mater., 8, 1-9 (2018).
  28. J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang, R. Kuliiev, N. Orlovskaya, M. Gu, Y. Du, G. Wang, and Y. Yang, Dual-doping and synergism toward high-performance seawater electrolysis, Adv. Mater., 33, 1-10 (2021).
  29. H. J. Song, H. Yoon, B. Ju, D. Y. Lee, and D. W. Kim, Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1-xFexP2O7 nanoparticles for alkaline seawater electrolysis, ACS Catal., 10, 702-709 (2020). https://doi.org/10.1021/acscatal.9b04231
  30. L. Wu, L. Yu, B. McElhenny, X. Xing, D. Luo, F. Zhang, J. Bao, S. Chen, and Z. Ren, Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis, Appl. Catal. B Environ., 294, 120256 (2021).
  31. L. Yang, Y. Zhao, L. Zhu, and D. Xia, Rational construction of grille structured P-CoZnO-Cu2SeS/NF composite electrocatalyst for boosting seawater electrolysis and corrosion resistance, Appl. Surf. Sci., 631, 157541 (2023).
  32. L. Yang, D. Lu, L. Zhu, and D. Xia, Construction of Mo doped CoMoCH-Cu2SeS/NF composite electrocatalyst with high catalytic activity and corrosion resistance in seawater electrolysis: A case study on cleaner energy, J. Clean. Prod., 413, 137462 (2023).
  33. C. Feng, M. Chen, Y. Zhou, Z. Xie, X. Li, P. Xiaokaiti, Y. Kansha, A. Abudula, and G. Guan, High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis, J. Colloid Interface Sci., 645, 724-734 (2023). https://doi.org/10.1016/j.jcis.2023.04.172
  34. S. Song, Y. Wang, X. Tian, F. Sun, X. Liu, Y. Yuan, W. Li, and J. Zang, S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis, J. Colloid Interface Sci., 633, 668-678 (2023). https://doi.org/10.1016/j.jcis.2022.11.113
  35. Z. Wang, C. Wang, L. Ye, X. Liu, L. Xin, Y. Yang, L. Wang, W. Hou, Y. Wen, and T. Zhan, MnOxFilm-Coated NiFe-LDH nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation, Inorg. Chem., 61, 15256-15265 (2022). https://doi.org/10.1021/acs.inorgchem.2c02579
  36. J. Zhu, J. Chi, T. Cui, L. Guo, S. Wu, B. Li, J. Lai, and L. Wang, F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density, Appl. Catal. B Environ., 328, 122487 (2023).
  37. Y. Li, X. Wu, J. Wang, H. Wei, S. Zhang, S. Zhu, Z. Li, S. Wu, H. Jiang, and Y. Liang, Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting, Electrochim. Acta, 390, 138833 (2021).
  38. H. Sun, J. Sun, Y. Song, Y. Zhang, Y. Qiu, M. Sun, X. Tian, C. Li, Z. Lv, and L. Zhang, Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis, ACS Appl. Mater. Interfaces, 14, 22061-22070 (2022). https://doi.org/10.1021/acsami.2c01643
  39. H. Wang, L. Chen, L. Tan, X. Liu, Y. Wen, W. Hou, and T. Zhan, Electrodeposition of NiFe-layered double hydroxide layer on sulfurmodified nickel molybdate nanorods for highly efficient seawater splitting, J. Colloid Interface Sci., 613, 349-358 (2022). https://doi.org/10.1016/j.jcis.2022.01.044
  40. L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, and Z. Ren, Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting, Adv. Funct. Mater., 31, 2006484 (2021).
  41. B. Chakraborty, R. Beltran-Suito, V. Hlukhyy, J. Schmidt, P. W. Menezes, and M. Driess, Crystalline copper selenide as a reliable nonnoble electro(pre)catalyst for overall water splitting, ChemSusChem, 13, 3222-3229 (2020). https://doi.org/10.1002/cssc.202000445
  42. H. He, L. Zeng, X. Peng, Z. Liu, D. Wang, B. Yang, Z. Li, L. Lei, S. Wang, and Y. Hou, Porous cobalt sulfide nanosheets arrays with low valence copper incorporated for boosting alkaline hydrogen evolution via lattice engineering, Chem. Eng. J., 451, 138628 (2022).
  43. Z. Zhao, J. Sun, and X. Meng, Recent advances in transition metal-based electrocatalysts for seawater electrolysis, Int. J. Energy Res., 46, 17952-17975 (2022). https://doi.org/10.1002/er.8486
  44. Y. Liu, X. Liang, L. Gu, Y. Zhang, G. D. Li, X. Zou, and J. S. Chen, Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours, Nat. Commun., 9, 1-10 (2018). https://doi.org/10.1038/s41467-017-02088-w
  45. S. Chen, J. Duan, M. Jaroniec, and S. Z. Qiao, Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction, Adv. Mater., 26, 2925-2930 (2014). https://doi.org/10.1002/adma.201305608
  46. F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan, and Y. Lin, NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution Reaction, Adv. Energy Mater., 8, 1-11 (2018).
  47. F. Dionigi and P. Strasser, NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes, Adv. Energy Mater., 6, 1600621 (2016).
  48. A. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O. L. Trinhammer, J. Rossmeisl, and S. Dahl, Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot, J. Chem. Educ., 89, 1595-1599 (2012). https://doi.org/10.1021/ed200818t
  49. A. Lam, H. Li, S. Zhang, H. Wang, D. P. Wilkinson, S. Wessel, and T. T. H. Cheng, Ex situ study of chloride contamination on carbon supported Pt catalyst, J. Power Sources, 205, 235-238 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.063
  50. W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, and S. J. Pennycook, Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis, Adv. Mater., 33, 1-8 (2021).
  51. L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen, and Z. Ren, Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst, ACS Energy Lett., 5, 2681-2689 (2020).