DOI QR코드

DOI QR Code

Intermittent Administration of Parathyroid Hormone for Orthodontic Tooth Movement in Mongrel Dogs: Preliminary Study

  • Won-Ho Kim (Department of Orthodontics, School of Medicine, Ewha Womans University) ;
  • Bo Ram Lee (Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Hey-Yun Kim (Graduate School of Medicine, Ewha Womans University) ;
  • Minji Kim (Department of Orthodontics, School of Medicine, Ewha Womans University) ;
  • Jin-Woo Kim (Graduate School of Clinical Dentistry, Ewha Womans University)
  • Received : 2023.08.25
  • Accepted : 2023.10.12
  • Published : 2023.12.30

Abstract

Purpose: This study investigated the orthodontic tooth movement after weekly parathyroid hormone (PTH) injection in mongrel dogs and analyzes bone formation activity on the tension and pressure sides of the tooth movement in mongrel dogs. Materials and Methods: Three mongrel dogs were used in this study. The first premolar was extracted and orthodontic force using 150 g of closed coil springs between the canine and second premolar was applied. The low-dose PTH group (PTH_1) and high-dose PTH group (PTH_2) received weekly injections of 1.61 ㎍/kg and 3.23 ㎍/kg of PTH, respectively. The control group received weekly injections of 1 ml of saline. Clinical, histomorphometric analysis were carried out. Result: The orthodontic tooth movement was greatest in the PTH_2 group and the lowest in the control group. Fluorescence staining images showed higher bone remodeling on the tension side of the tooth movement in the PTH_1 and PTH_2 groups. PTH_2 group showed a thicker labeling band than the PTH_1 group. PTH_2 group showed the highest mineral apposition rate and bone formation rate, followed by the PTH_1 group and the control group. Conclusion: Weekly intermittent PTH injection, especially in the short-term and at higher doses with orthodontic force, successfully increased orthodontic tooth movement and bone remodeling in mongrel dogs.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C4001842).

References

  1. Hill PA. Bone remodelling. Br J Orthod. 1998; 25: 101-7. https://doi.org/10.1093/ortho/25.2.101
  2. Canalis E. The hormonal and local regulation of bone formation. Endocr Rev. 1983; 4: 62-77. https://doi.org/10.1210/edrv-4-1-62
  3. Noyes FB. Histology of bone related to orthodontic treatment. Am J Orthod Oral Surg. 1942; 28: 760-9. https://doi.org/10.1016/S0096-6347(42)90262-X
  4. Baumrind S, Buck DL. Rate changes in cell replication and protein synthesis in the periodontal ligament incident to tooth movement. Am J Orthod. 1970; 57: 109-31. https://doi.org/10.1016/0002-9416(70)90259-9
  5. Zheng M, Liu R, Ni Z, Yu Z. Efficiency, effectiveness and treatment stability of clear aligners: a systematic review and meta-analysis. Orthod Craniofac Res. 2017; 20: 127-33. https://doi.org/10.1111/ocr.12177
  6. Hennessy J, Garvey T, Al-Awadhi EA. A randomized clinical trial comparing mandibular incisor proclination produced by fixed labial appliances and clear aligners. Angle Orthod. 2016; 86: 706-12. https://doi.org/10.2319/101415-686.1
  7. Proffit WR, Fields H, Larson B, Sarver DM. Contemporary orthodontics. 6th ed. St. Louis: Mosby; 2018.
  8. Pizzo G, Licata ME, Guiglia R, Giuliana G. Root resorption and orthodontic treatment. Review of the literature. Minerva Stomatol. 2007; 56: 31-44.
  9. Justus R. Prevention of external apical root resorption during orthodontic treatment. Clin Dent Rev. 2018; 2: 23.
  10. Liu L, Igarashi K, Kanzaki H, Chiba M, Shinoda H, Mitani H. Clodronate inhibits PGE(2) production in compressed periodontal ligament cells. J Dent Res. 2006; 85: 757-60. https://doi.org/10.1177/154405910608500813
  11. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002; 17: 210-20. https://doi.org/10.1359/jbmr.2002.17.2.210
  12. Yamasaki K, Shibasaki Y, Fukuhara T. Behavior of mast cells in periodontal ligament associated with experimental tooth movement in rats. J Dent Res. 1982; 61: 1447-50. https://doi.org/10.1177/00220345820610121501
  13. Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. 2004; 83: 920-5. https://doi.org/10.1177/154405910408301206
  14. Dunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile WV. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone. 2007; 41: 446-55. https://doi.org/10.1016/j.bone.2007.04.194
  15. Zhao N, Lin J, Kanzaki H, Ni J, Chen Z, Liang W, Liu Y. Local osteoprotegerin gene transfer inhibits relapse of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2012; 141: 30-40. https://doi.org/10.1016/j.ajodo.2011.06.035
  16. Kouskoura T, Katsaros C, von Gunten S. The potential use of pharmacological agents to modulate orthodontic tooth movement (OTM). Front Physiol. 2017; 8: 67.
  17. Kim SE, Suh DH, Yun YP, Lee JY, Park K, Chung JY, Lee DW. Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci Mater Med. 2012; 23: 2739-49. https://doi.org/10.1007/s10856-012-4729-9
  18. Greenfield EM. Anabolic effects of intermittent PTH on osteoblasts. Curr Mol Pharmacol. 2012; 5: 127-34. https://doi.org/10.2174/1874467211205020127
  19. Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, Sato M, Hock JM. Anabolic and catabolic bone effects of human parathyroid hormone (1-34) are predicted by duration of hormone exposure. Bone. 2003; 33: 372-9. https://doi.org/10.1016/S8756-3282(03)00202-3
  20. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007; 40: 1434-46. https://doi.org/10.1016/j.bone.2007.03.017
  21. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001; 344: 1434-41. https://doi.org/10.1056/NEJM200105103441904
  22. Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res. 1999; 14: 546-54. https://doi.org/10.1359/jbmr.1999.14.4.546
  23. Lee HS, Heo HA, Park SH, Lee W, Pyo SW. Influence of human parathyroid hormone during orthodontic tooth movement and relapse in the osteoporotic rat model: a preliminary study. Orthod Craniofac Res. 2018. doi: 10.1111/ocr.12226
  24. Salazar M, Hernandes L, Ramos AL, Micheletti KR, Albino CC, Nakamura Cuman RK. Effect of teriparatide on induced tooth displacement in ovariectomized rats: a histomorphometric analysis. Am J Orthod Dentofacial Orthop. 2011; 139: e337-44. https://doi.org/10.1016/j.ajodo.2009.08.030
  25. Kim J, Kim HY, Kim WH, Kim JW, Kim MJ. Effect of PTH and corticotomy on implant movement under mechanical force. BMC Oral Health. 2020; 20: 315.
  26. Burr DB, Allen MR. Basic and applied bone biology. 2nd ed. Cambridge: Academic Press; 2019.
  27. Yoon HC, Choi JY, Jung UW, Bae EK, Choi SH, Cho KS, Lee HY, Kim CK, Shim JS. Effects of different depths of gap on healing of surgically created coronal defects around implants in dogs: a pilot study. J Periodontol. 2008; 79: 355-61. https://doi.org/10.1902/jop.2008.070306
  28. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013; 28: 2-17. https://doi.org/10.1002/jbmr.1805
  29. Mostafa YA, Mohamed Salah Fayed M, Mehanni S, ElBokle NN, Heider AM. Comparison of corticotomy-facilitated vs standard tooth-movement techniques in dogs with miniscrews as anchor units. Am J Orthod Dentofacial Orthop. 2009; 136: 570-7. https://doi.org/10.1016/j.ajodo.2007.10.052
  30. Li Z, Zhou J, Chen S. The effectiveness of locally injected platelet-rich plasma on orthodontic tooth movement acceleration. Angle Orthod. 2021; 91: 391-8. https://doi.org/10.2319/061320-544.1
  31. Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, Iwamoto M. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000; 79: 1717-24. https://doi.org/10.1177/00220345000790091301
  32. Lombardi G, Di Somma C, Rubino M, Faggiano A, Vuolo L, Guerra E, Contaldi P, Savastano S, Colao A. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Invest. 2011; 34(7 Suppl): 18-22.
  33. Li F, Li G, Hu H, Liu R, Chen J, Zou S. Effect of parathyroid hormone on experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2013; 144: 523-32. https://doi.org/10.1016/j.ajodo.2013.05.010
  34. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005; 11: 76-81. https://doi.org/10.1016/j.molmed.2004.12.004
  35. Greenfield EM, Gornik SA, Horowitz MC, Donahue HJ, Shaw SM. Regulation of cytokine expression in osteoblasts by parathyroid hormone: rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. J Bone Miner Res. 1993; 8: 1163-71. https://doi.org/10.1002/jbmr.5650081003
  36. Roodman GD. Osteoclast function in Paget's disease and multiple myeloma. Bone. 1995; 17(2 Suppl): 57S-61S. https://doi.org/10.1016/8756-3282(95)00179-H
  37. McSheehy PM, Chambers TJ. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology. 1986; 118: 824-8. https://doi.org/10.1210/endo-118-2-824
  38. Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R. Anabolic actions of parathyroid hormone on bone. Endocr Rev. 1993; 14: 690-709. Erratum in: Endocr Rev. 1994; 15: 261.
  39. Nara Y, Kitaura H, Marahleh A, Ohori F, Noguchi T, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Enhancement of orthodontic tooth movement and root resorption in ovariectomized mice. J Dent Sci. 2022; 17: 984-90. https://doi.org/10.1016/j.jds.2021.11.009
  40. Kunii R, Yamaguchi M, Tanimoto Y, Asano M, Yamada K, Goseki T, Kasai K. Role of interleukin-6 in orthodontically induced inflammatory root resorption in humans. Korean J Orthod. 2013; 43: 294-301. https://doi.org/10.4041/kjod.2013.43.6.294
  41. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006; 129: 469.e1-32. https://doi.org/10.1016/j.ajodo.2005.10.007
  42. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006; 129: 458-68. https://doi.org/10.1016/j.ajodo.2005.12.013
  43. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005; 26: 688-703. https://doi.org/10.1210/er.2004-0006