DOI QR코드

DOI QR Code

Strategies for Managing Dementia Patients through Improving Oral Health and Occlusal Rehabilitation: A Review and Meta-analysis

  • Yeon-Hee Lee (Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University School of Dentistry) ;
  • Sung-Woo Lee (Department of Oral Medicine and Oral Diagnosis, Seoul National University School of Dentistry) ;
  • Hak Young Rhee (Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine) ;
  • Min Kyu Sim (Department of Industrial Engineering, Seoul National University of Science and Technology (SeoulTech)) ;
  • Su-Jin Jeong (Kyung Hee University Medical Center, Medical Science Research Institute, Statistics Support Part) ;
  • Chang Won Won (Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University)
  • Received : 2023.10.13
  • Accepted : 2023.10.27
  • Published : 2023.12.30

Abstract

Dementia is an umbrella term that describes the loss of thinking, memory, attention, logical reasoning, and other mental abilities to the extent that it interferes with the activities of daily living. More than 50 million individuals worldwide live with dementia, which is expected to increase to 131 million by 2050. Recent research has shown that poor oral health increases the risk of dementia, while oral health declines with cognitive decline. In this narrative review, the literature was based on the "hypothesis" that dementia and oral health have a close relationship, and appropriate oral health and occlusal rehabilitation treatment can improve the quality of life of patients with dementia and prevent progression. We conducted a literature search in PubMed and Google Scholar databases, using the search terms "dementia," "major neurocognitive disorder," "dentition," "occlusion," "tooth loss," "dental prosthesis," "dental implant," and "occlusal rehabilitation" in the title field over the past 30 years. A total of 131 studies that scientifically addressed dementia, oral health, and/or oral rehabilitation were included. In a meta-analysis, the random effect model demonstrated significant tooth loss increasing the dementia risk 3.64-fold (pooled odds ratio=3.64, 95% confidence interval [2.50~5.32], P-value=0.0348). Tooth loss can be an important indicator of cognitive function decline. As the number of missing teeth increases, the risk of dementia increases. Loss of teeth can lead to a decrease in the ascending information to the brain and reduced masticatory ability, cerebral blood flow, and psychological atrophy. Oral microbiome dysbiosis and migration of key bacterial species to the brain can also cause dementia. Additionally, inflammation in the oral cavity affects the inflammatory response of the brain and the complete body. Conversely, proper oral hygiene management, the placement of dental implants or prostheses to replace lost teeth, and the restoration of masticatory function can inhibit symptom progression in patients with dementia. Therefore, improving oral health can prevent dementia progression and improve the quality of life of patients.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea Grant (NRF/2020R1F1A1070072) obtained from Y.-H.L. and funded by the Korean government. This work was supported by the Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, Ministry of Health & Welfare, Republic of Korea, Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0023, 9991006696).

References

  1. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022; 7: e105-25. https://doi.org/10.1016/S2468-2667(21)00249-8
  2. Park T, Jung YS, Son K, Bae YC, Song KB, Amano A, Choi YH. More teeth and posterior balanced occlusion are a key determinant for cognitive function in the elderly. Int J Environ Res Public Health. 2021; 18: 1996.
  3. Derouesne C. [What is dementia? 2. A fuzzy construct]. Psychol Neuropsychiatr Vieil. 2003; 1: 15-24. French.
  4. Sousa S, Teixeira L, Paul C. Assessment of major neurocognitive disorders in primary health care: predictors of individual risk factors. Front Psychol. 2020; 11: 1413.
  5. Ganguli M, Blacker D, Blazer DG, Grant I, Jeste DV, Paulsen JS, Petersen RC, Sachdev PS. Classification of neurocognitive disorders in DSM-5: a work in progress. Am J Geriatr Psychiatry. 2011; 19: 205-10. https://doi.org/10.1097/JGP.0b013e3182051ab4
  6. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014; 88: 640-51. https://doi.org/10.1016/j.bcp.2013.12.024
  7. Sheehan B. Assessment scales in dementia. Ther Adv Neurol Disord. 2012; 5: 349-58. https://doi.org/10.1177/1756285612455733
  8. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, CohenMansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimaki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbaek G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020; 396: 413-46. Erratum in: Lancet. 2023; 402: 1132.
  9. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, Jonsson L, Liu Z, Prince M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement. 2017; 13: 1-7. https://doi.org/10.1016/j.jalz.2016.07.150
  10. Jia J, Wei C, Chen S, Li F, Tang Y, Qin W, Zhao L, Jin H, Xu H, Wang F, Zhou A, Zuo X, Wu L, Han Y, Han Y, Huang L, Wang Q, Li D, Chu C, Shi L, Gong M, Du Y, Zhang J, Zhang J, Zhou C, Lv J, Lv Y, Xie H, Ji Y, Li F, Yu E, Luo B, Wang Y, Yang S, Qu Q, Guo Q, Liang F, Zhang J, Tan L, Shen L, Zhang K, Zhang J, Peng D, Tang M, Lv P, Fang B, Chu L, Jia L, Gauthier S. The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimers Dement. 2018; 14: 483-91. https://doi.org/10.1016/j.jalz.2017.12.006
  11. Nandi A, Counts N, Chen S, Seligman B, Tortorice D, Vigo D, Bloom DE. Global and regional projections of the economic burden of Alzheimer's disease and related dementias from 2019 to 2050: a value of statistical life approach. EClinicalMedicine. 2022; 51: 101580.
  12. Shon C, Yoon H. Health-economic burden of dementia in South Korea. BMC Geriatr. 2021; 21: 549.
  13. Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis. 2020; 12: 1179573520907397.
  14. Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer's disease. Ther Adv Neurol Disord. 2011; 4: 203-16. https://doi.org/10.1177/1756285611404470
  15. Hamza SA, Asif S, Bokhari SAH. Oral health of individuals with dementia and Alzheimer's disease: a review. J Indian Soc Periodontol. 2021; 25: 96-101. https://doi.org/10.4103/jisp.jisp_287_20
  16. Scambler S, Curtis S, Manthorpe J, Samsi K, Rooney YM, Gallagher JE. The mouth and oral health in the field of dementia. Health (London). 2023; 27: 540-58. https://doi.org/10.1177/13634593211049891
  17. Daly B, Thompsell A, Sharpling J, Rooney YM, Hillman L, Wanyonyi KL, White S, Gallagher JE. Evidence summary: the relationship between oral health and dementia. Br Dent J. 2018; 223: 846-53. https://doi.org/10.1038/sj.bdj.2017.992
  18. Langdon SA, Eagle A, Warner J. Making sense of dementia in the social world: a qualitative study. Soc Sci Med. 2007; 64: 989-1000. https://doi.org/10.1016/j.socscimed.2006.10.029
  19. Almeida MC, Carrettiero DC. Hypothermia as a risk factor for Alzheimer disease. Handb Clin Neurol. 2018; 157: 727-35.
  20. Duong S, Patel T, Chang F. Dementia: what pharmacists need to know. Can Pharm J (Ott). 2017; 150: 118-29. https://doi.org/10.1177/1715163517690745
  21. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener. 2019; 14: 32.
  22. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984; 34: 939-44. https://doi.org/10.1212/WNL.34.7.939
  23. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R; Contributors. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018; 14: 535-62. https://doi.org/10.1016/j.jalz.2018.02.018
  24. Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med. 2011; 3: 77sr1.
  25. van der Flier WM, Scheltens P. Epidemiology and risk factors of dementia. J Neurol Neurosurg Psychiatry. 2005; 76 Suppl 5(Suppl 5): v2-7. https://doi.org/10.1136/jnnp.2005.082867
  26. Chandler J, Georgieva M, Desai U, Kirson N, Lane H, Cheung HC, Westermeyer B, Biglan K. Disease progression and longitudinal clinical outcomes of Lewy body dementia in the NACC database. Neurol Ther. 2023; 12: 177-95. https://doi.org/10.1007/s40120-022-00417-w
  27. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson's disease. Brain Pathol. 2010; 20: 633-9. https://doi.org/10.1093/med/9780199564118.003.002
  28. Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018; 8: 33-48. https://doi.org/10.1177/2045125317739818
  29. Custodio N, Montesinos R, Lira D, Herrera-Perez E, Bardales Y, Valeriano-Lorenzo L. Mixed dementia: a review of the evidence. Dement Neuropsychol. 2017; 11: 364-70. https://doi.org/10.1590/1980-57642016dn11-040005
  30. Gomez-Isla T, Spires T, De Calignon A, Hyman BT. Neuropathology of Alzheimer's disease. Handb Clin Neurol. 2008; 89: 233-43. https://doi.org/10.1016/S0072-9752(07)01222-5
  31. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012; 8: 1-13. https://doi.org/10.1016/j.jalz.2011.10.007
  32. Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009; 68: 1-14. https://doi.org/10.1097/NEN.0b013e3181919a48
  33. Vijayan M, Reddy PH. Stroke, vascular dementia, and Alzheimer's disease: molecular links. J Alzheimers Dis. 2016; 54: 427-43. https://doi.org/10.3233/JAD-160527
  34. Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010; 120: 287-96. https://doi.org/10.1007/s00401-010-0718-6
  35. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013; 80: 844-66. https://doi.org/10.1016/j.neuron.2013.10.008
  36. Cai Z, Wang C, He W, Tu H, Tang Z, Xiao M, Yan LJ. Cerebral small vessel disease and Alzheimer's disease. Clin Interv Aging. 2015; 10: 1695-704. https://doi.org/10.2147/CIA.S90871
  37. Goedert M, Ghetti B, Spillantini MG. Frontotemporal dementia: implications for understanding Alzheimer disease. Cold Spring Harb Perspect Med. 2012; 2: a006254.
  38. Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs. 2010; 24: 375-98. https://doi.org/10.2165/11533100-000000000-00000
  39. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DM; Consortium for Frontotemporal Lobar Degeneration. Neuro-pathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 2007; 114: 5-22. https://doi.org/10.1007/s00401-007-0237-2
  40. Kim WS, Kagedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther. 2014; 6: 73.
  41. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathol. 2010; 120: 131-43. https://doi.org/10.1007/s00401-010-0711-0
  42. Perl DP. Neuropathology of Alzheimer's disease. Mt Sinai J Med. 2010; 77: 32-42. https://doi.org/10.1002/msj.20157
  43. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011; 1: a006189.
  44. Wadsworth JD, Joiner S, Linehan JM, Desbruslais M, Fox K, Cooper S, Cronier S, Asante EA, Mead S, Brandner S, Hill AF, Collinge J. Kuru prions and sporadic Creutzfeldt-Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice. Proc Natl Acad Sci U S A. 2008; 105: 3885-90. https://doi.org/10.1073/pnas.0800190105
  45. Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol. 2010; 5: 294-309. https://doi.org/10.1007/s11481-010-9205-z
  46. Wiegmann C, Mick I, Brandl EJ, Heinz A, Gutwinski S. Alcohol and dementia - What is the link? A Systematic review. Neuropsychiatr Dis Treat. 2020; 16: 87-99. https://doi.org/10.2147/NDT.S198772
  47. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009; 66: 200-8. https://doi.org/10.1002/ana.21706
  48. Orme T, Hernandez D, Ross OA, Kun-Rodrigues C, Darwent L, Shepherd CE, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, Rogaeva E, St George-Hyslop P, Londos E, Zetterberg H, Morgan K, Troakes C, Al-Sarraj S, Lashley T, Holton J, Compta Y, Van Deerlin V, Trojanowski JQ, Serrano GE, Beach TG, Lesage S, Galasko D, Masliah E, Santana I, Pastor P, Tienari PJ, Myllykangas L, Oinas M, Revesz T, Lees A, Boeve BF, Petersen RC, Ferman TJ, Escott-Price V, Graff-Radford N, Cairns NJ, Morris JC, Pickering-Brown S, Mann D, Halliday G, Stone DJ, Dickson DW, Hardy J, Singleton A, Guerreiro R, Bras J. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathol Commun. 2020; 8: 5. https://doi.org/10.1186/s40478-020-0879-z
  49. Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: review. JAMA. 2019; 322: 1589-99. https://doi.org/10.1001/jama.2019.4782
  50. Luchesi BM, Melo BRS, Balderrama P, Gratao ACM, Chagas MHN, Pavarini SCI, Martins TCR. Prevalence of risk factors for dementia in middle-and older- aged people registered in Primary Health Care. Dement Neuropsychol. 2021; 15: 239-47. https://doi.org/10.1590/1980-57642021dn15-020012
  51. Tanaka M, Imano H, Hayama-Terada M, Muraki I, Shirai K, Yamagishi K, Okada T, Kiyama M, Kitamura A, Takayama Y, Iso H. Sex- and age-specific impacts of smoking, overweight/obesity, hypertension, and diabetes mellitus in the development of disabling dementia in a Japanese population. Environ Health Prev Med. 2023; 28: 11.
  52. de Almeida Faria ACR, Dall'Agnol JF, Gouveia AM, de Paiva CI, Segalla VC, Baena CP. Risk factors for cognitive decline in type 2 diabetes mellitus patients in Brazil: a prospective observational study. Diabetol Metab Syndr. 2022; 14: 105.
  53. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997; 278: 1349-56. https://doi.org/10.1001/jama.1997.03550160069041
  54. Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: a potential path to precision medicine. Pharmacol Ther. 2019; 199: 173-87. https://doi.org/10.1016/j.pharmthera.2019.03.005
  55. Litke R, Garcharna LC, Jiwani S, Neugroschl J. Modifiable risk factors in Alzheimer disease and related dementias: a review. Clin Ther. 2021; 43: 953-65. https://doi.org/10.1016/j.clinthera.2021.05.006
  56. Sabia S, Dugravot A, Dartigues JF, Abell J, Elbaz A, Kivimaki M, Singh-Manoux A. Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. BMJ. 2017; 357: j2709.
  57. Chen J, Ren CJ, Wu L, Xia LY, Shao J, Leng WD, Zeng XT. Tooth loss is associated with increased risk of dementia and with a dose-response relationship. Front Aging Neurosci. 2018; 10: 415.
  58. Yoo JJ, Yoon JH, Kang MJ, Kim M, Oh N. The effect of missing teeth on dementia in older people: a nationwide population-based cohort study in South Korea. BMC Oral Health. 2019; 19: 61.
  59. Tang X, Pan Y, Zhao Y. Vitamin D inhibits the expression of interleukin-8 in human periodontal ligament cells stimulated with Porphyromonas gingivalis. Arch Oral Biol. 2013; 58: 397-407. https://doi.org/10.1016/j.archoralbio.2012.09.010
  60. Han J, Cheng C, Zhu Z, Lin M, Zhang DX, Wang ZM, Wang S. Vitamin D reduces the serum levels of inflammatory cytokines in rat models of periodontitis and chronic obstructive pulmonary disease. J Oral Sci. 2019; 61: 53-60. https://doi.org/10.2334/josnusd.17-0357
  61. Wu B, Fillenbaum GG, Plassman BL, Guo L. Association between oral health and cognitive status: a systematic review. J Am Geriatr Soc. 2016; 64: 739-51. Erratum in: J Am Geriatr Soc. 2016; 64: 1752.
  62. Balasubramaniam A, Diwakar MKP, Vaitheswaran S, Santhosh Kumar MP, Sushanthi S, Pandiyan I. Determining association between cognitive function and oral health status among rural community dwelling geriatrics. J Int Soc Prev Community Dent. 2021; 11: 281-6. https://doi.org/10.4103/jispcd.JISPCD_394_20
  63. Martande SS, Pradeep AR, Singh SP, Kumari M, Suke DK, Raju AP, Naik SB, Singh P, Guruprasad CN, Chatterji A. Periodontal health condition in patients with Alzheimer's disease. Am J Alzheimers Dis Other Demen. 2014; 29: 498-502. https://doi.org/10.1177/1533317514549650
  64. Kononen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019; 8: 1135.
  65. Abbayya K, Puthanakar NY, Naduwinmani S, Chidambar YS. Association between periodontitis and Alzheimer's disease. N Am J Med Sci. 2015; 7: 241-6. https://doi.org/10.4103/1947-2714.159325
  66. Bowland GB, Weyrich LS. The oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspective. Front Psychiatry. 2022; 13: 810008.
  67. Tan ZS, Beiser AS, Vasan RS, Roubenoff R, Dinarello CA, Harris TB, Benjamin EJ, Au R, Kiel DP, Wolf PA, Seshadri S. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology. 2007; 68: 1902-8. https://doi.org/10.1212/01.wnl.0000263217.36439.da
  68. Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, de Leon MJ. Inflammation and Alzheimer's disease: possible role of periodontal diseases. Alzheimers Dement. 2008; 4: 242-50. https://doi.org/10.1016/j.jalz.2007.08.004
  69. Watts A, Crimmins EM, Gatz M. Inflammation as a potential mediator for the association between periodontal disease and Alzheimer's disease. Neuropsychiatr Dis Treat. 2008; 4: 865-76. https://doi.org/10.2147/NDT.S3610
  70. Teixeira FB, Saito MT, Matheus FC, Prediger RD, Yamada ES, Maia CSF, Lima RR. Periodontitis and Alzheimer's disease: a possible comorbidity between oral chronic inflammatory condition and neuroinflammation. Front Aging Neurosci. 2017; 9: 327.
  71. Lee YH, Chung SW, Auh QS, Hong SJ, Lee YA, Jung J, Lee GJ, Park HJ, Shin SI, Hong JY. Progress in oral microbiome related to oral and systemic diseases: an update. Diagnostics (Basel). 2021; 11: 1283.
  72. Kamer AR, Craig RG, Pirraglia E, Dasanayake AP, Norman RG, Boylan RJ, Nehorayoff A, Glodzik L, Brys M, de Leon MJ. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects. J Neuroimmunol. 2009; 216: 92-7. https://doi.org/10.1016/j.jneuroim.2009.08.013
  73. Orr ME, Reveles KR, Yeh CK, Young EH, Han X. Can oral health and oral-derived biospecimens predict progression of dementia? Oral Dis. 2020; 26: 249-58. https://doi.org/10.1111/odi.13201
  74. Beydoun MA, Beydoun HA, Hossain S, El-Hajj ZW, Weiss J, Zonderman AB. Clinical and bacterial markers of periodontitis and their association with incident all-cause and Alzheimer's disease dementia in a large national survey. J Alzheimers Dis. 2020; 75: 157-72. https://doi.org/10.3233/JAD-200064
  75. Noble JM, Scarmeas N, Celenti RS, Elkind MS, Wright CB, Schupf N, Papapanou PN. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS One. 2014; 9: e114959.
  76. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7: 189-200. https://doi.org/10.1080/19490976.2015.1134082
  77. Feng W, Ao H, Peng C. Gut microbiota, short-chain fatty acids, and herbal medicines. Front Pharmacol. 2018; 9: 1354.
  78. Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut microbiota and dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment. Mol Neurobiol. 2020; 57: 5026-43. https://doi.org/10.1007/s12035-020-02073-3
  79. Bulgart HR, Neczypor EW, Wold LE, Mackos AR. Microbial involvement in Alzheimer disease development and progression. Mol Neurodegener. 2020; 15: 42.
  80. Kaye EK, Valencia A, Baba N, Spiro A 3rd, Dietrich T, Garcia RI. Tooth loss and periodontal disease predict poor cognitive function in older men. J Am Geriatr Soc. 2010; 58: 713-8. https://doi.org/10.1111/j.1532-5415.2010.02788.x
  81. Martinez-Garcia M, Hernandez-Lemus E. Periodontal inflammation and systemic diseases: an overview. Front Physiol. 2021; 12: 709438.
  82. Batty GD, Li Q, Huxley R, Zoungas S, Taylor BA, Neal B, de Galan B, Woodward M, Harrap SB, Colagiuri S, Patel A, Chalmers J; VANCE Collaborative group. Oral disease in relation to future risk of dementia and cognitive decline: prospective cohort study based on the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified-Release Controlled Evaluation (ADVANCE) trial. Eur Psychiatry. 2013; 28: 49-52. https://doi.org/10.1016/j.eurpsy.2011.07.005
  83. Stein PS, Desrosiers M, Donegan SJ, Yepes JF, Kryscio RJ. Tooth loss, dementia and neuropathology in the Nun study. J Am Dent Assoc. 2007; 138: 1314-22; quiz 1381-2. https://doi.org/10.14219/jada.archive.2007.0046
  84. Okamoto N, Morikawa M, Tomioka K, Yanagi M, Amano N, Kurumatani N. Association between tooth loss and the development of mild memory impairment in the elderly: the Fujiwara-kyo Study. J Alzheimers Dis. 2015; 44: 777-86. https://doi.org/10.3233/JAD-141665
  85. Saito S, Ohi T, Murakami T, Komiyama T, Miyoshi Y, Endo K, Satoh M, Asayama K, Inoue R, Kikuya M, Metoki H, Imai Y, Ohkubo T, Hattori Y. Association between tooth loss and cognitive impairment in community-dwelling older Japanese adults: a 4-year prospective cohort study from the Ohasama study. BMC Oral Health. 2018; 18: 142.
  86. Yamamoto T, Kondo K, Hirai H, Nakade M, Aida J, Hirata Y. Association between self-reported dental health status and onset of dementia: a 4-year prospective cohort study of older Japanese adults from the Aichi Gerontological Evaluation Study (AGES) Project. Psychosom Med. 2012; 74: 241-8. https://doi.org/10.1097/PSY.0b013e318246dffb
  87. Kossioni AE. The association of poor oral health parameters with malnutrition in older adults: a review considering the potential implications for cognitive impairment. Nutrients. 2018; 10: 1709.
  88. Azzolino D, Passarelli PC, De Angelis P, Piccirillo GB, D'Addona A, Cesari M. Poor oral health as a determinant of malnutrition and sarcopenia. Nutrients. 2019; 11: 2898.
  89. Smith PJ, Blumenthal JA. Dietary factors and cognitive decline. J Prev Alzheimers Dis. 2016; 3: 53-64.
  90. Krishnamoorthy G, Narayana AI, Balkrishanan D. Mastication as a tool to prevent cognitive dysfunctions. Jpn Dent Sci Rev. 2018; 54: 169-73. https://doi.org/10.1016/j.jdsr.2018.06.001
  91. Silva Ulloa S, Cordero Ordonez AL, Barzallo Sardi VE. Relationship between dental occlusion and brain activity: a narrative review. Saudi Dent J. 2022; 34: 538-43. https://doi.org/10.1016/j.sdentj.2022.09.001
  92. Dintica CS, Marseglia A, Wardh I, Stjernfeldt Elgestad P, Rizzuto D, Shang Y, Xu W, Pedersen NL. The relation of poor mastication with cognition and dementia risk: a population-based longitudinal study. Aging (Albany NY). 2020; 12: 8536-48. https://doi.org/10.18632/aging.103156
  93. Khoury-Ribas L, Ayuso-Montero R, Willaert E, Peraire M, Martinez-Gomis J. Do implant-supported fixed partial prostheses improve masticatory performance in patients with unilateral posterior missing teeth? Clin Oral Implants Res. 2019; 30: 420-8. https://doi.org/10.1111/clr.13427
  94. Forna N, Agop-Forna D. Esthetic aspects in implant-prosthetic rehabilitation. Med Pharm Rep. 2019; 92(Suppl No 3): S6-S13. https://doi.org/10.15386/mpr-1515
  95. Ki S, Yun J, Kim J, Lee Y. Association between dental implants and cognitive function in community-dwelling older adults in Korea. J Prev Med Public Health. 2019; 52: 333-43. https://doi.org/10.3961/jpmph.19.163
  96. De Cicco V, Barresi M, Tramonti Fantozzi MP, Cataldo E, Parisi V, Manzoni D. Oral implant-prostheses: new teeth for a brighter brain. PLoS One. 2016; 11: e0148715.
  97. Wang X, Hu J, Jiang Q. Tooth loss-associated mechanisms that negatively affect cognitive function: a systematic review of animal experiments based on occlusal support loss and cognitive impairment. Front Neurosci. 2022; 16: 811335.
  98. Chen H, Iinuma M, Onozuka M, Kubo KY. Chewing maintains hippocampus-dependent cognitive function. Int J Med Sci. 2015; 12: 502-9. https://doi.org/10.7150/ijms.11911
  99. Bortoluzzi MC, Traebert J, Lasta R, Da Rosa TN, Capella DL, Presta AA. Tooth loss, chewing ability and quality of life. Contemp Clin Dent. 2012; 3: 393-7. https://doi.org/10.4103/0976-237X.107424
  100. Kim MS, Han DH. Does reduced chewing ability efficiency influence cognitive function? Results of a 10-year national cohort study. Medicine (Baltimore). 2022; 101: e29270.
  101. Savikko N, Saarela RK, Soini H, Muurinen S, Suominen MH, Pitkala KH. Chewing ability and dementia. J Am Geriatr Soc. 2013; 61: 849-51. https://doi.org/10.1111/jgs.12233
  102. Teixeira FB, Pereira Fernandes Lde M, Noronha PA, dos Santos MA, Gomes-Leal W, Ferraz Maia Cdo S, Lima RR. Masticatory deficiency as a risk factor for cognitive dysfunction. Int J Med Sci. 2014; 11: 209-14. https://doi.org/10.7150/ijms.6801
  103. Luo B, Pang Q, Jiang Q. Tooth loss causes spatial cognitive impairment in rats through decreased cerebral blood flow and increased glutamate. Arch Oral Biol. 2019; 102: 225-30. https://doi.org/10.1016/j.archoralbio.2019.05.004
  104. Lin CS. Revisiting the link between cognitive decline and masticatory dysfunction. BMC Geriatr. 2018; 18: 5.
  105. Westberg KG, Kolta A. The trigeminal circuits responsible for chewing. Int Rev Neurobiol. 2011; 97: 77-98. https://doi.org/10.1016/B978-0-12-385198-7.00004-7
  106. Ono Y, Yamamoto T, Kubo KY, Onozuka M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J Oral Rehabil. 2010; 37: 624-40. https://doi.org/10.1111/j.1365-2842.2010.02079.x
  107. Suzuki A, Iinuma M, Hayashi S, Sato Y, Azuma K, Kubo KY. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring. Brain Res. 2016; 1651: 36-43. https://doi.org/10.1016/j.brainres.2016.09.007
  108. Chuhuaicura P, Dias FJ, Arias A, Lezcano MF, Fuentes R. Mastication as a protective factor of the cognitive decline in adults: a qualitative systematic review. Int Dent J. 2019; 69: 334-40. https://doi.org/10.1111/idj.12486
  109. Kubo KY, Iinuma M, Chen H. Mastication as a stress-coping behavior. Biomed Res Int. 2015; 2015: 876409.
  110. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016; 6: 603-21. https://doi.org/10.1002/cphy.c150015
  111. Ono Y, Kataoka T, Miyake S, Cheng SJ, Tachibana A, Sasaguri KI, Onozuka M. Chewing ameliorates stress-induced suppression of hippocampal long-term potentiation. Neuroscience. 2008; 154: 1352-9. https://doi.org/10.1016/j.neuroscience.2008.04.057
  112. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992; 267: 1244-52. Erratum in: JAMA 1992; 268: 200.
  113. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015; 22: 411-6. https://doi.org/10.1101/lm.037291.114
  114. Leon LR, White AA, Kluger MJ. Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice. Am J Physiol. 1998; 275: R269-77. https://doi.org/10.1152/ajpregu.1998.275.1.R269
  115. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science. 1987; 238: 522-4. https://doi.org/10.1126/science.2821621
  116. Qing H, Desrouleaux R, Israni-Winger K, Mineur YS, Fogelman N, Zhang C, Rashed S, Palm NW, Sinha R, Picciotto MR, Perry RJ, Wang A. Origin and function of stress-induced IL-6 in murine models. Cell. 2020; 182: 372-87.e14. Erratum in: Cell. 2020; 182: 1660.
  117. Vincent GP, Pare WP, Prenatt JE, Glavin GB. Aggression, body temperature, and stress ulcer. Physiol Behav. 1984; 32: 265-8. https://doi.org/10.1016/0031-9384(84)90140-9
  118. Watanabe T, Higuchi K, Hamaguchi M, Shiba M, Tominaga K, Fujiwara Y, Matsumoto T, Arakawa T. Monocyte chemotactic protein-1 regulates leukocyte recruitment during gastric ulcer recurrence induced by tumor necrosis factor-alpha. Am J Physiol Gastrointest Liver Physiol. 2004; 287: G919-28. https://doi.org/10.1152/ajpgi.00372.2003
  119. Roohafza H, Afshar H, Keshteli AH, Shirani MJ, Afghari P, Vali A, Adibi P. Masticatory ability with depression, anxiety, and stress: does there exist any association? Dent Res J (Isfahan). 2016; 13: 211-6. https://doi.org/10.4103/1735-3327.182179
  120. Chun H, Doo M. Factors related to depression associated with chewing problems in the Korean elderly population. Int J Environ Res Public Health. 2021; 18: 6158.
  121. Chan AKY, Tamrakar M, Jiang CM, Lo ECM, Leung KCM, Chu CH. Common medical and dental problems of older adults: a narrative review. Geriatrics (Basel). 2021; 6: 76.
  122. Li L, Zhang Q, Yang D, Yang S, Zhao Y, Jiang M, Wang X, Zhao L, Liu Q, Lu Z, Zhou X, Gan Y, Wu C. Tooth loss and the risk of cognitive decline and dementia: a meta-analysis of cohort studies. Front Neurol. 2023; 14: 1103052.
  123. Gupta P, Gupta N, Pawar AP, Birajdar SS, Natt AS, Singh HP. Role of sugar and sugar substitutes in dental caries: a review. ISRN Dent. 2013; 2013: 519421.
  124. Schaefer SM, Kaiser A, Behrendt I, Eichner G, Fasshauer M. Association of alcohol types, coffee, and tea intake with risk of dementia: prospective cohort study of UK biobank participants. Brain Sci. 2022; 12: 360.
  125. Hausen H. Fluoride toothpaste prevents caries. Evid Based Dent. 2003; 4: 28.
  126. Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000. 2021; 87: 107-31. https://doi.org/10.1111/prd.12393
  127. Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev. 2000; 13: 547-58. https://doi.org/10.1128/CMR.13.4.547
  128. Kubo KY, Iinuma M, Shibutani T, Ito M, Iwaku F. Denture-handling ability of elderly persons with dementia: examination of time spent inserting and removing dentures. Spec Care Dentist. 2007; 27: 149-53. https://doi.org/10.1111/j.1754-4505.2007.tb00338.x
  129. Yi Mohammadi JJ, Franks K, Hines S. Effectiveness of professional oral health care intervention on the oral health of residents with dementia in residential aged care facilities: a systematic review protocol. JBI Database System Rev Implement Rep. 2015; 13: 110-22. https://doi.org/10.11124/jbisrir-2015-2330
  130. Guo H, Chang S, Pi X, Hua F, Jiang H, Liu C, Du M. The effect of periodontitis on dementia and cognitive impairment: a meta-analysis. Int J Environ Res Public Health. 2021; 18: 6823.
  131. Schaper S, Meyer-Rotz S, Bartels C, Wiltfang J, Rodig T, Schott BH, Belz M. Dental care of patients with dementia: a survey on practice equipment, training, and dental treatment. Front Oral Health. 2021; 2: 682139.