DOI QR코드

DOI QR Code

전기자동차용 파워모듈 적용을 위한 Sn-Ag-Fe TLP (Transient Liquid Phase) 접합에 관한 연구

Study on Sn-Ag-Fe Transient Liquid Phase Bonding for Application to Electric Vehicles Power Modules

  • 김병우 (조선대학교 용접.접합과학공학과) ;
  • 고혜리 (조선대학교 용접.접합과학공학과) ;
  • 천경영 (한국생산기술연구원 접합적층연구부문) ;
  • 고용호 (한국생산기술연구원 접합적층연구부문) ;
  • 손윤철 (조선대학교 용접.접합과학공학과)
  • Byungwoo Kim (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Hyeri Go (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Gyeongyeong Cheon (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology) ;
  • Yong-Ho Ko (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology) ;
  • Yoonchul Sohn (Dept. of Welding & Joining Science Engineering, Chosun University)
  • 투고 : 2023.12.15
  • 심사 : 2023.12.29
  • 발행 : 2023.12.30

초록

무연솔더에 Fe 입자를 첨가하여 Cu3Sn 금속간화합물 성장을 억제하고 취성파괴를 방지하는 연구는 보고된 바 있으나 이러한 복합솔더를 TLP(transient liquid phase) 본딩에 적용한 경우는 아직 없다. 본 연구에서는 Sn계 무연솔더 내부에 Fe 입자의 함량을 적절히 조절하여 Sn-3.5Ag-15.0Fe 복합솔더를 제작하고 TLP 본딩에 적용하여 접합부 전체를 Sn-Fe 금속간화합물로 변화시킴으로써 고온 솔더로서의 적용 가능성을 탐색하였다. 접합공정 중에 형성되는 FeSn2 금속간화합물은 513℃의 고융점을 가지므로 사용 중 온도가 280℃까지 상승하는 전력반도체용 파워모듈에 안정적으로 적용이 가능하다. 칩과 기판에 ENIG(electroless nickel-immersion gold) 표면처리를 적용한 결과 접합부에 Ni3Sn4/FeSn2/Ni3Sn4의 다층 금속간화합물 구조를 형성하였으며 전단시험시 파괴경로는 Ni3Sn4/FeSn2 계면에서 균열이 진전하다가 FeSn2 내부로 전파되는 양상을 보였다. TLP 접합공정 2시간 이후에는 30 MPa 이상의 전단강도를 얻었고 특히 200℃ 전단시험에서도 강도 저하가 전혀 없었다. 본 연구결과는 최근 활발히 연구되고 있는 전기자동차용 파워모듈에 적용할 수 있는 소재 및 공정으로 기대할 수 있다.

In this study, Sn-3.5Ag-15.0Fe composite solder was manufactured and applied to TLP bonding to change the entire joint into a Sn-Fe IMC(intermetallic compound), thereby applying it as a high-temperature solder. The FeSn2 IMC formed during the bonding process has a high melting point of 513℃, so it can be stably applied to power modules for power semiconductors where the temperature rises up to 280℃ during use. As a result of applying ENIG surface treatment to both the chip and substrate, a multi-layer IMC structure of Ni3Sn4/FeSn2/Ni3Sn4 was formed at the joint. During the shear test, the fracture path showed that cracks developed at the Ni3Sn4/FeSn2 interface and then propagated into FeSn2. After 2hours of the TLP joining process, a shear strength of over 30 MPa was obtained, and in particular, there was no decrease in strength at all even in a shear test at 200℃. The results of this study can be expected to lead to materials and processes that can be applied to power modules for electric vehicles, which are being actively researched recently.

키워드

과제정보

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (2021RIS-002)

참고문헌

  1. H. Choi, "Overview of silicon carbide power devices", Fairchild semiconductor (2016).
  2. H. Lee, V. Semt, and R. Tummala, "A review of SiC power module packaging technologies: challenges, advances, and emerging issues", IEEE. J. Emerg. Sel. Top. Power. Electron., 8(1), 239-255 (2019).
  3. X. She, A. Huang, O. Lucia, and B. Ozpineci, "Review of silicon carbide power devices and their applications", IEEE. Trans. Ind. Electron., 64(10), 8193-8205 (2017). https://doi.org/10.1109/TIE.2017.2652401
  4. J. W. Yoon, J. H. Bang, Y. H. Ko, S. H. Yoo, J. K. Kim, and C. W. Lee, "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications", Journal of the Microelectronics and Packaging Society, 21(4), 1-13 (2014). https://doi.org/10.6117/KMEPS.2014.21.4.001
  5. Y. J. Seo, M. H. Heo, and J. W. Yoon, "A Study of Transient Liquid Phase Bonding with Ni-foam/Sn-3.0Ag-0.5Cu Composite Solder for EV Power Module Package Application", Journal of the Microelectronics and Packaging Society, 30(1), 55-62 (2023). https://doi.org/10.6117/KMEPS.2023.30.1.055
  6. M. S. Kim and D. J. Kim, "Ag Sintering Die Attach Technology for Wide-bandgap Power Semiconductor Packaging", Journal of the Microelectronics and Packaging Society, 30(1), 1-16 (2023). https://doi.org/10.6117/KMEPS.2023.30.1.01
  7. H. J. Kang and J. P. Jung, "TLP and Wire Bonding for Power Module", Journal of the Microelectronics and Packaging Society, 26(4), 7-13 (2019).
  8. A. Sharif, C. L. Gan, and Z. Chen, "Transient liquid phase Ag-based solder technology for high-temperature packaging applications", J. Alloys. Compd., 587, 365-368 (2014). https://doi.org/10.1016/j.jallcom.2013.10.204
  9. K. Chu, Y. C. Sohn, and C. Y. Moon, "A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding", Scr. Mater., 109, 113-117 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.032
  10. V. Chidambaram, J. Hattel, and J. Hald, "High-temperature lead-free solder alternatives", Microelectron. Eng., 88(6), 981-989 (2011). https://doi.org/10.1016/j.mee.2010.12.072
  11. N. Saud and R. M. Said, "Transient liquid phase bonding for solder-a short review", IOP. Conf. Ser. Mater. Sci. Eng., 701, 012050 (2019). https://doi.org/10.1088/1757-899X/701/1/012050
  12. G. O. Cook and C. D. Sorensen, "Overview of transient liquid phase and partial transient liquid phase bonding", J. Mater. Sci., 46, 5305-5323 (2011). https://doi.org/10.1007/s10853-011-5561-1
  13. Q. Guo, S. Sun, Z. Zhang, H. Chen and M. Li, "Microstructure evolution and mechanical strength evaluation in Ag/Sn/Cu TLP bonding interconnection during aging test", Microelectron. Reliab., 80, 144-148 (2018). https://doi.org/10.1016/j.microrel.2017.12.001
  14. O. Mokhtari and H. Nishikawa, "Transient liquid phase bonding of Sn-Bi solder with added Cu particles", J. Mater. Sci: Mater Electron., 27, 4232-4244 (2016). https://doi.org/10.1007/s10854-016-4287-x
  15. A. A. Bajwa and J. Wilde, "Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices", Microelectron. Reliab., 60, 116-125 (2016). https://doi.org/10.1016/j.microrel.2016.02.016
  16. S. F. Corbin and D. J. McIsaac, "Differential scanning calorimetry of the stages of transient liquid phase sintering", Mat. Sci. Eng: A., 346(1-2), 132-140 (2003). https://doi.org/10.1016/S0921-5093(02)00530-0
  17. X. Qiao and S. F. Corbin, "Development of transient liquid phase sintered (TLPS) Sn-Bi solider pastes", Mat. Sci. Eng: A., 283(1-2), 38-45 (2000). https://doi.org/10.1016/S0921-5093(00)00621-3
  18. S. Cheng, C. M. Huang and M. Pecht, "A review of lead-free solders for electronics applications", Microelectron. Reliab., 75, 77-95 (2017). https://doi.org/10.1016/j.microrel.2017.06.016
  19. X. Liu, M. Huang, N. Zhao, and L. Wang, "Liquid-state and solid-state interfacial reactions between Sn-Ag-Cu-Fe composite solders and Cu substrate", J. Mater. Sci., 25, 328-337 (2014). https://doi.org/10.1007/s10854-013-1590-7
  20. Y. W. Wang, Y. W. Lin, C. T. Tu, and C. R. Kao, "Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu", J. Alloys. Compd., 478(1-2), 121-127 (2009). https://doi.org/10.1016/j.jallcom.2008.11.052
  21. M. Hutter, R. Schmidt, P. Zerrer, S. Rauschenbach, K. Wittke, W. Scheel, and H. Reichl, "Effects of Additional Elements (Fe, Co, Al) on SnAgCu Solder Joints", Electron. Compon. Technol. Conf., 54-60 (2009).
  22. Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih, and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428-2436 (2004). https://doi.org/10.1557/JMR.2004.0297
  23. Y. C. Sohn and J. Yu, "Correlation between Chemical Reaction and Brittle Fracture Found in ENIG (electroless Ni(P)/immersion gold)/solder Interconnection", J. Mater. Res., 20(8), 1931-1934 (2005). https://doi.org/10.1557/JMR.2005.0246