DOI QR코드

DOI QR Code

구리 기반 전극을 활용한 전기화학적 이산화탄소 환원 및 C2+ 화합물 생성 기술

Copper-Based Electrochemical CO2 Reduction and C2+ Products Generation: A Review

  • 허지원 (전남대학교 화학공학부) ;
  • 성채원 (전남대학교 화학공학부) ;
  • ;
  • ;
  • 이무성 (전남대학교 화학공학부) ;
  • 하준석 (전남대학교 화학공학부)
  • Jiwon Heo (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Chaewon Seong (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Vishal Burungale (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Pratik Mane (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Moo Sung Lee (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Jun-Seok Ha (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 투고 : 2023.12.22
  • 심사 : 2023.12.30
  • 발행 : 2023.12.30

초록

세계적으로 화석 연료의 무분별한 사용으로 지구 온난화가 가속화되면서 대기 중 이산화탄소 농도를 줄이기 위한 다양한 노력이 진행되고 있다. 전기화학적 이산화탄소 환원 기술은 이산화탄소를 유용한 탄화수소 화합물로 전환할 수 있는 친환경 기술로 인정받고 있는 유망한 기술로 탄소중립을 달성하기 위해 필수적이라는 의견이 지배적이다. 이산화탄소 환원 전극으로 사용되는 많은 물질 중에서도 구리는 C2+ 화합물을 생성할 수 있는 유일한 금속으로 알려져 있으나 낮은 전환 효율과 선택도로 인해 아직 상용화되기에는 어려움이 있어 이를 해결하기 위해 다양한 연구가 이루어지고 있다. 본 리뷰에서는 구리 기반 전극을 활용한 다양한 이산화탄소 환원 연구들을 소개한다.

Amidst escalating global warming fueled by indiscriminate fossil fuel consumption, concerted efforts are underway worldwide to mitigate atmospheric carbon dioxide (CO2) levels. Electrochemical CO2 reduction technology is recognized as a promising and environmentally friendly approach to convert CO2 into valuable hydrocarbon compounds, deemed essential for achieving carbon neutrality. Copper, among the various materials used as CO2 reduction electrodes, is known as the sole metal capable of generating C2+ compounds. However, low conversion efficiency and selectivity have hindered its widespread commercialization. This review highlights diverse research endeavors to address these challenges. It explores various studies focused on utilizing copper-based electrodes for CO2 reduction, offering insights into potential solutions for advancing this crucial technology.

키워드

과제정보

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-002)과 2019년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받은 기초과학연구역량강화사업 핵심연구지원센터 조성 지원 과제에서 에너지 융복합 전문 핵심 연구지원센터를 조성하여(2019R1A6C1010024) 수행된 연구결과임.

참고문헌

  1. J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, and E. Bard, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation", Nature, 484(7392), 49-54 (2012). https://doi.org/10.1038/nature10915
  2. S. Chu, and A. Majumdar, "Opportunities and challenges for a sustainable energy future", Nature, 488(7411), 294-303 (2012). https://doi.org/10.1038/nature11475
  3. J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Norskov, "Materials for solar fuels and chemicals", Nat. Mater., 16(1), 70-81 (2016). https://doi.org/10.1038/nmat4778
  4. J. P. Gattuso, A. Magnan, R. Bille, W. W. L. Cheung, E. L. Howes, F. Joos, D. Allemand, L. Bopp, S. R. Cooley, C. M. Eakin, O. Hoegh-Guldberg, R. P. Kelly, H. O. Portner, A. D. Rogers, J. M. Baxter, D. Laffoley, D. Osborn, A. Rankovic, J. Rochette, U. R. Sumaila, S. Treyer, and C. Turley, "Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios", Science, 349(6243), 45 (2015).
  5. M. Rohini, S. Kanase, R. S. Kanase, and S. H. Kang, "Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction", J. Microelectron. Packag. Soc., 27(4), 11-17 (2020).
  6. P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Muhd, "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)", Renew. Sustain. Energy Rev., 43, 843-862 (2015). https://doi.org/10.1016/j.rser.2014.11.066
  7. R. S. Haszeldine, S. Flude, G. Johnson, and V. Scott, "Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments", Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376(2119), (2018).
  8. B. Rama (eds.), H.-O. Portner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem, "Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", IPCC, Cambridge Univ. Press. Cambridge, UK New York, NY, USA, 3056 (2022).
  9. H. B. Yang, S. F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Hu ang, H. Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, and B. Liu, "Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction", Nat. Energy, 3(2), 140-147 (2018). https://doi.org/10.1038/s41560-017-0078-8
  10. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, and Y. Xie, "Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel", Nature, 529(7584), 68-71 (2016). https://doi.org/10.1038/nature16455
  11. D. Ren, J. Gao, L. Pan, Z. Wang, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, "Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels", Angew. Chemie - Int. Ed., 58(42), 15036-15040 (2019). https://doi.org/10.1002/anie.201909610
  12. X. Fu, J. Wang, X. Hu, K. He, Q. Tu, Q. Yue, and Y. Kang, "Scalable Chemical Interface Confinement Reduction BiOBr to Bismuth Porous Nanosheets for Electroreduction of Carbon Dioxide to Liquid Fuel", Adv. Funct. Mater., 32(10), 1-8 (2022). https://doi.org/10.1002/adfm.202107182
  13. S. W. Bang, H. Rho, H. Bae, S. Kang, and J. Ha, "Improvement of Electrochemical Reduction Characteristics of Carbon Dioxide at Porous Copper Electrode using Graphene", J. Microelectron. Packag. Soc., 25(4), 105-109 (2018).
  14. B. Gibbons, M. Cai, and A. J. Morris, "A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays", J. Am. Chem. Soc., 144(39), 17723-17736 (2022). https://doi.org/10.1021/jacs.2c04144
  15. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, and Z. Jin, "Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals", Adv. Sci., 5(1), (2018).
  16. L. Fan, C. Y. Liu, P. Zhu, C. Xia, X. Zhang, Z. Y. Wu, Y. Lu, T. P. Senftle, and H. Wang, "Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products", Joule, 6(1), 205-220 (2022). https://doi.org/10.1016/j.joule.2021.12.002
  17. W. Liu, P. Zhai, A. Li, B. Wei, K. Si, Y. Wei, X. Wang, G. Zhu, Q. Chen, X. Gu, R. Zhang, W. Zhou, and Y. Gong, "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays", Nat. Commun., 13(1), 1-12 (2022). https://doi.org/10.1038/s41467-022-29428-9
  18. C. Peng, G. Luo, J. Zhang, M. Chen, Z. Wang, T. K. Sham, L. Zhang, Y. Li, and G. Zheng, "Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol", Nat. Commun., 12(1), 1-8 (2021). https://doi.org/10.1038/s41467-020-20314-w
  19. Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, and B. Han, "Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex", Nat. Commun., 10(1), (2019).
  20. Y. Hori, R. Takahashi, Y. Yoshinami, and A. Murata, "Electrochemical reduction of CO at a copper electrode", J. Phys. Chem. B, 101(36), 7075-7081 (1997). https://doi.org/10.1021/jp970284i
  21. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, and F. Jiao, "A selective and efficient electrocatalyst for carbon dioxide reduction", Nat. Commun., 5, 1-6 (2014).
  22. T. Zheng, K. Jiang, and H. Wang, "Recent Advances in Electrochemical CO2-to-CO Conversion on Heterogeneous Catalysts", Adv. Mater., 30(48), 1-15 (2018). https://doi.org/10.1002/adma.201802066
  23. S. Jin, Z. Hao, K. Zhang, Z. Yan, and J. Chen, "Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization", Angew. Chemie - Int. Ed., 60(38), 20627-20648 (2021). https://doi.org/10.1002/anie.202101818
  24. J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Norskov, and T. F. Jaramillo, "Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes", ACS Catal., 7(7), 4822-4827 (2017). https://doi.org/10.1021/acscatal.7b00687
  25. Y. Chen, and M. W. Kanan, "Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts", J. Am. Chem. Soc., 134(4), 1986-1989 (2012). https://doi.org/10.1021/ja2108799
  26. Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, and S. Z. Qiao, "Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts", J. Am. Chem. Soc., 141(19), 7646-7659 (2019). https://doi.org/10.1021/jacs.9b02124
  27. Y. Xu, F. Li, A. Xu, J. P. Edwards, S. F. Hung, C. M. Gabardo, C. P. O'Brien, S. Liu, X. Wang, Y. Li, J. Wicks, R. K. Miao, Y. Liu, J. Li, J. E. Huang, J. Abed, Y. Wang, E. H. Sargent, and D. Sinton, "Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly", Nat. Commun., 12(1), 4-10 (2021). https://doi.org/10.1038/s41467-020-20323-9
  28. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, and J. K. Norskov, "How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels", Energy Environ. Sci., 3(9), 1311-1315 (2010). https://doi.org/10.1039/c0ee00071j
  29. H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, and C. He, "Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol", J. Am. Chem. Soc., 141(32), 12717-12723 (2019). https://doi.org/10.1021/jacs.9b04907
  30. X. Liu, B. Q. Li, B. Ni, L. Wang, and H. J. Peng, "A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts", J. Energy Chem., 64, 263-275 (2021).
  31. L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, and Y. Lu, "Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products", Sci. Adv., 6(8), 1-18 (2020). https://doi.org/10.1126/sciadv.aay3111
  32. Z. Sun, T. Ma, H. Tao, Q. Fan, and B. Han, "Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials", Chem, 3(4), 560-587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
  33. S. Hanselman, M. T. M. Koper, and F. Calle-Vallejo, "Computational Comparison of Late Transition Metal (100) Surfaces for the Electrocatalytic Reduction of CO to C2 Species", ACS Energy Lett., 3(5), 1062-1067 (2018). https://doi.org/10.1021/acsenergylett.8b00326
  34. C. Hahn, T. Hatsukade, Y. G. Kim, A. Vailionis, J. H. Baricuatro, D. C. Higgins, S. A. Nitopi, M. P. Soriaga, and T. F. Jaramillo, "Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons", Proc. Natl. Acad. Sci. U. S. A., 114(23), 5918-5923 (2017). https://doi.org/10.1073/pnas.1618935114
  35. D. Ren, N. T. Wong, A. D. Handoko, Y. Huang, and B. S. Yeo, "Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol", J. Phys. Chem. Lett., 7(1), 20-24 (2016). https://doi.org/10.1021/acs.jpclett.5b02554
  36. L. Wu, K. E. Kolmeijer, Y. Zhang, H. An, S. Arnouts, S. Bals, T. Altantzis, J. P. Hofmann, M. Costa Figueiredo, E. J. M. Hensen, B. M. Weckhuysen, and W. Van Der Stam, "Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO2 reduction conditions", Nanoscale, 13(9), 4835-4844 (2021). https://doi.org/10.1039/D0NR09040A
  37. E. D. Goodman, J. A. Schwalbe, and M. Cargnello, "Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts", ACS Catal., 7(10), 7156-7173 (2017). https://doi.org/10.1021/acscatal.7b01975
  38. L. R. L. Ting, O. Pique, S. Y. Lim, M. Tanhaei, F. CalleVallejo, and B. S. Yeo, "Enhancing CO2 Electroreduction to Ethanol on Copper-Silver Composites by Opening an Alternative Catalytic Pathway", ACS Catal., 10(7), 4059-4069 (2020). https://doi.org/10.1021/acscatal.9b05319
  39. A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, and S. Z. Qiao, "Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction", Chem, 4(8), 1809-1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
  40. T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, and H. Wang, "Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst", Joule, 3(1), 265-278 (2019). https://doi.org/10.1016/j.joule.2018.10.015
  41. H. Shang, W. Sun, R. Sui, J. Pei, L. Zheng, J. Dong, Z. Jiang, D. Zhou, Z. Zhuang, W. Chen, J. Zhang, D. Wang, and Y. Li, "Engineering Isolated Mn-N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction", Nano Lett., 20(7), 5443-5450 (2020). https://doi.org/10.1021/acs.nanolett.0c01925
  42. S. Shen, X. Peng, L. Song, Y. Qiu, C. Li, L. Zhuo, J. He, J. Ren, X. Liu, and J. Luo, "AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO2 to Ethanol", Small, 15(37), 1-7 (2019). https://doi.org/10.1002/smll.201902229
  43. C. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, K. P. Kuhl, A. Jackson, N. C. Johnson, D. N. Abram, T. Hatsukade, C. Hahn, and T. F. Jaramillo, "Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst", Nat. Catal., 1(10), 764-771 (2018). https://doi.org/10.1038/s41929-018-0139-9
  44. C. Zhu, A. Chen, J. Mao, G. Wu, S. Li, X. Dong, G. Li, Z. Jiang, Y. Song, W. Chen, and W. Wei, "Cu-Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products", Small Struct., 4(5), 1-9 (2023). https://doi.org/10.1002/sstr.202200328
  45. S. Ma, M. Sadakiyo, M. Heim, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, and P. J. A. Kenis, "Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns", J. Am. Chem. Soc., 139(1), 47-50 (2017). https://doi.org/10.1021/jacs.6b10740
  46. Y. B. Shin, Y. H. Ju, and J. Kim, "Technical Trends of Metal Nanowire-Based Electrode", J. Microelectron. Packag. Soc., 26(4), 15-22 (2019).
  47. L. Han, B. Tian, X. Gao, Y. Zhong, S. Wang, S. Song, Z. Wang, Y. Zhang, Y. Kuang, and X. Sun, "Copper nanowire with enriched high-index facets for highly selective CO2 reduction", SmartMat, 3(1), 142-150 (2022). https://doi.org/10.1002/smm2.1082
  48. H. S. Jeon, S. Kunze, F. Scholten, and B. Roldan Cuenya, "Prism-Shaped Cu Nanocatalysts for Electrochemical CO2 Reduction to Ethylene", ACS Catal., 8(1), 531-535 (2018). https://doi.org/10.1021/acscatal.7b02959
  49. Z. Yin, C. Yu, Z. Zhao, X. Guo, M. Shen, N. Li, M. Muzzio, J. Li, H. Liu, H. Lin, J. Yin, G. Lu, D. Su, and S. Sun, "Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene", Nano Lett., 8658-8663 (2019).