DOI QR코드

DOI QR Code

잔디 예지물의 혐기소화에서 사일리지 저장기간이 메탄 생산에 미치는 영향

Effects of silage storage period of grass clippings on methane production by anaerobic digestion

  • 여진 (한경국립대학교 바이오가스연구센터) ;
  • 김태희 (한경국립대학교 식물생명환경전공) ;
  • 김창규 (한경국립대학교 식물생명환경전공) ;
  • 이서영 (한경국립대학교 식물생명환경전공) ;
  • 윤영만 (한경국립대학교 바이오가스연구센터)
  • Jin Yeo (Biogas Research Center, Hankyong National University) ;
  • Tae-Hee Kim (Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Chang-Gyu Kim (Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Seo-Yeong Lee (Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Young-Man Yoon (Biogas Research Center, Hankyong National University)
  • 투고 : 2023.11.14
  • 심사 : 2023.12.06
  • 발행 : 2023.12.30

초록

본 연구에서는 초본계 바이오매스인 잔디 예지물의 혐기소화 원료 가치를 평가하기 위하여 잔디 3종 (Poa pratensis, PP; Zoysia japonica, ZJ; Agrostis stolonifera, AS)의 생화학적 메탄퍼텐셜을 측정하였으며, 사일리지 저장기간 (0, 30, 60, 90, 120, 180일)에 따른 잔디 예지물 (PP)의 생화학적 메탄퍼텐셜 변화를 분석하여 사일리지 저장기간이 잔디 예지물의 혐기소화에 미치는 영향을 평가하고자 하였다. Parallel first-order kinetics model에 의한 생화학적 메탄퍼텐셜 (Bu-P)은 PP, ZJ, AS에서 각각 0.330, 0.297, 0.261 Nm3/kg-VSadded이었으며, PP의 잔디 예지물이 메탄생산을 위한 혐기소화 원료로서 가장 적합하였다. PP의 잔디 예지물 사일리지의 Bu-P는 저장기간 0일 0.269 Nm3/kg-VSadded에서 저장기간 180일 0.217 Nm3/kg-VSadded로 약 19% 감소하였다. 또한, 잔디 예지물 사일리지 저장기간 0일에 NDF, ADF, BP 함량은 각각 67.59, 39.68, 3.02%인 반면, 180일에는 각각 77.12, 54.65, 6.24%로 나타나 저장기간 180일에 잔디 예지물 사일리지에서 세포벽 구성 물질의 함량이 크게 증가하였다. 잔디 예지물을 효율적으로 혐기소화 하기 위해서는 사일리지 저장 방식 외에도 사일리지 제조과정에서 초기 수분함량, 효소 또는 알칼리 처리와 같은 전처리 방법, 잔류 농약에 의한 혐기소화 저해 영향 등에 관한 추가적인 연구가 요구된다.

This study assessed the biochemical methane potential (Bu-P) of three grass species-Poa pratensis (PP), Zoysia japonica (ZJ), and Agrostis stolonifera (AS). Bu-P values were determined as 0.330 Nm3/kg-VSadded for PP, 0.297 Nm3/kg-VSadded for ZJ, and 0.261 Nm3/kg-VSadded for AS. Notably, PP exhibited superior suitability for methane production. The investigation also examined the impact of silage storage duration on PP grass clippings, revealing a 19% decline in Bu-P from an initial value of 0.269 Nm3/kg-VSadded on day 0 to 0.217 Nm3/kg-VSadded on day 180. Throughout the storage period, there were significant increases in neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude protein (CP) contents, rising from 67.59%, 39.68%, and 3.02% on day 0 to 77.12%, 54.65%, and 6.24% on day 180, respectively. These findings highlight the influence of storage duration on the anaerobic digestibility of PP grass clippings. To effectively utilize grass clippings as a renewable resource for methane production, further studies considering factors such as initial moisture content, pretreatment methods, and potential effects of residual pesticides are necessary to optimize anaerobic digestion efficiency for herbaceous biomass.

키워드

과제정보

본 연구는 농림축산식품부 및 농림식품기술기획평가원의 지원을 받아 수행되었습니다 (과제번호 : 321091-3)

참고문헌

  1. Uddin, M. M., and Wright, M. M., "Anaerobic digestion fundamentals, challenges, and technological advances", Physical Sciences Reviews. (2022).
  2. ME (Ministry of Environment), "Status of organic waste biogasification facilities in 2021". (2022).
  3. Yoon, Y., Kim, C., Kim, Y., and Park, H., "The economical evaluation of biogas production facility of pig waste", Korean Journal of Agricultural Management and Policy, 36(1), pp. 137~157. (2009).
  4. Lim, J. H., and Park, Y. D., "The investigation of methane production by agricultural byproducts", RDA (Rural Development Administration), 15, pp. 102~113. (1983).
  5. Yoo, J. S., Kim, C. H., and Yoon, Y. M., "Biochemical methane potential analysis for anaerobic digestion of giant miscanthus (Miscanthus sacchariflorus)", Korean Journal of Environmental Agriculture, 36(1), pp. 29~35. (2017). https://doi.org/10.5338/KJEA.2017.36.1.03
  6. Kim, T. B., Shin, K. S., An, J. H., and Yoon, Y. M., "A Study on the Analysis of the Biochemical Methane Potential of the Kenaf (Hibiscus cannabinus)", Korean Journal of Soil Science and Fertilizer, 54(2), pp. 161~173. (2021). https://doi.org/10.7745/KJSSF.2021.54.2.161
  7. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., and Gruber, L., "Biogas production from maize and dairy cattle manure-influence of biomass composition on the methane yield", Agriculture, Ecosystems and Environment, 118(1-4), pp. 173~182. (2007). https://doi.org/10.1016/j.agee.2006.05.007
  8. Nabil Abdalla, S. B., "Horst Fehrenbach, Susanne Koppen, Tim Janosch Staigl., Biomethane in Europe", IFEU (Institut fur Energie- und Umweltforschung Heidelberg gGmbH). (2022).
  9. Wang, S., Tao, X., Zhang, G., Zhang, P., Wang, H., Ye, J., Li, F., Zhang, Q., and Nabi, M., "Benefit of solid-liquid separation on volatile fatty acid production from grass clipping with ultrasound-calcium hydroxide pretreatment", Bioresource Technology, 274, pp. 97~104. (2019). https://doi.org/10.1016/j.biortech.2018.11.072
  10. KCA (Korea Consumer Agency), "Survey on golf course usage". (2022).
  11. KGBA (Korea Golf Course Business Association), "National golf course user status in 2022". (2023).
  12. Ham, E. S., "A study on the composting of grass clippings from golf courses at Jeju island", Graduate School of Industry Jeju National University. (2009).
  13. Choi, H. H., Kang, Y. Y., Kim, W. I., and Oh, G. J., "Prediction of generation and estimation of recycling on waste artificial turf", Journal of Korea Society of Waste Management, 31(5), pp. 526~534. (2014). https://doi.org/10.9786/kswm.2014.31.5.526
  14. Benjamin, M. M., Woods, S. L., and Ferguson, J. F., "Anaerobic toxicity and biodegradability of pulp mill waste constituents", Water Research, 18(5), pp. 601~607. (1984). https://doi.org/10.1016/0043-1354(84)90210-0
  15. Yu, H. W., Samani, Z., Hanson, A., and Smith, G., "Energy recovery from grass using two-phase anaerobic digestion", Waste Management, 22(1), pp. 1~5. (2002). https://doi.org/10.1016/S0956-053X(00)00121-5
  16. Amon, T., Kryvoruchko, V., Amon, B., Zollitsch, W., and Potsch, E., "Biogas production from maize and clover grass estimated with the methane energy value system", in Proceedings of the Conference, Engineering the Future (AgEng'04). (2004).
  17. Mahnert, P., Heiermann, M., and Linke, B., "Batch- and semi-continuous biogas production from different grass species". (2005).
  18. Cirne, D., Lehtomaki, A., Bjornsson, L., and Blackall, L., "Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops", Journal of Applied Microbiology, 103(3), pp. 516~527. (2007). https://doi.org/10.1111/j.1365-2672.2006.03270.x
  19. Wang, G., "Biogas production from energy crops and agriculture residues". (2010).
  20. Murphy, J., Braun, R., Weiland, P., and Wellinger, A., "Biogas from crop digestion", IEA Bioenergy Task, 37(37), pp. 1~23. (2011).
  21. Nizami, A., Orozco, A., Groom, E., Dieterich, B., and Murphy, J., "How much gas can we get from grass?", Applied Energy, 92, pp. 783~790. (2012). https://doi.org/10.1016/j.apenergy.2011.08.033
  22. Ahn, J. H., Gillespie, A., and Shin, S. G., "Biogas potential estimation for mono-and co-digestion of cow manure and waste grass", Journal of the Korea Organic Resources Recycling Association, 28(1), pp. 15~25. (2020).
  23. RDA (Rural Development Administration), "Roughage (Agricultural Technology Guide 91)". (2022).
  24. Weiland, P., "Biogas production: Current state and perspectives", Applied Microbiology and Biotechnology, 85(4), pp. 849~860. (2010). https://doi.org/10.1007/s00253-009-2246-7
  25. Digman, M. F., Shinners, K. J., Casler, M. D., Dien, B. S., Hatfield, R. D., Jung, H.-J. G., Muck, R. E., and Weimer, P. J., "Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production", Bioresource Technology, 101(14), pp. 5305~5314. (2010). https://doi.org/10.1016/j.biortech.2010.02.014
  26. Schumacher, B., Wedwitschka, H., Hofmann, J., Denysenko, V., Lorenz, H., and Liebetrau, J., "Disintegration in the biogas sector-Technologies and effects", Bioresource Technology, 168, pp. 2~6. (2014). https://doi.org/10.1016/j.biortech.2014.02.027
  27. Gallegos, D., Wedwitschka, H., Moeller, L., Zehnsdorf, A., and Stinner, W., "Effect of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw", Bioresource Technology, 245(1), pp. 216~224. (2017). https://doi.org/10.1016/j.biortech.2017.08.137
  28. Boyle, W., "Energy recovery from sanitary landfills-a review", Microbial Energy Conversion, pp. 119~138. (1977).
  29. Kim, S. H., Kim, H., Oh, S. Y., Kim, C. H., and Yoon, Y. M., "Effect of substrate to inoculum ratio on biochemical methane potential in the thermal pretreatment of piggery sludge", Korean Journal of Soil Science and Fertilizer, 45(4), pp. 532~539. (2012). https://doi.org/10.7745/KJSSF.2012.45.4.532
  30. Hashimoto, A. G., "Effect of inoculum/substrate ratio on methane yield and production rate from straw", Biological Wastes, 28(4), pp. 247~255. (1989). https://doi.org/10.1016/0269-7483(89)90108-0
  31. Raposo, F., Borja, R., Rincon, B., and Jimenez, A., "Assessment of process control parameters in the biochemical methane potential of sunflower oil cake", Biomass and Bioenergy, 32(12), pp. 1235~1244. (2008). https://doi.org/10.1016/j.biombioe.2008.02.019
  32. Lee, K. Y., Lee, H. D., and Kong, M. S., "Effect of substrate/inoculum ratio on batch anaerobic digestion of food waste leachate", The Society of Convergence Knowledge, 4(2), pp. 37~41. (2016).
  33. Oh, S. Y., and Yoon, Y. M., "Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization", Energies, 10(11), pp. 1876. (2017).
  34. Sorensen, A. H.-N., MargretheAhring, Birgitte K., "Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors", Applied Microbiology and Biotechnology, 34(6), pp. 823~827. (1991).
  35. APHA (American Public Health Association), "Standard methods for the examination of water and wastewater". (1998).
  36. AOAC (Association of official analytical chemists), Association of official analytical chemists, 18th ed.. (2007).
  37. Van Soest, P. V., Robertson, J. B., and Lewis, B. A., "Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition", Journal of Dairy Science, 74(10), pp. 3583~3597. (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  38. Undersander, D., Mertens, D., and Thiex, N., "Forage analyses", Information Systems Division, National Agricultural Library (United States of America) NAL/USDA, pp. 10301. (1993).
  39. Rao, M., SPSingh, AKSodha, MS., "Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage", Applied Energy, 66(1), pp. 75~87. (2000). https://doi.org/10.1016/S0306-2619(99)00056-2
  40. Yu, L., Bule, M., Ma, J., Zhao, Q., Frear, C., and Chen, S., "Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment", Bioresource Technology, 162, pp. 243~249. (2014). https://doi.org/10.1016/j.biortech.2014.03.089
  41. Fitamo, T., Boldrin, A., Boe, K., Angelidaki, I., and Scheutz, C., "Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors", Bioresource Technology, 206, pp. 245~254. (2016). https://doi.org/10.1016/j.biortech.2016.01.085
  42. Edwiges, T., Bastos, J. A., Alino, J. H. L., Frare, L. M., and Somer, J. G., "Comparison of various pretreatment techniques to enhance biodegradability of lignocellulosic biomass for methane production", Journal of Environmental Chemical Engineering, 7(6), pp. 103495. (2019).
  43. Kim, Y.-S., Lee, C.-E., and Lee, G.-J., "Growth and quality changes of creeping bentgrass by application of liquid fertilizer containing silicate", Weed and Turfgrass Science, 5(3), pp. 170~176. (2016). https://doi.org/10.5660/WTS.2016.5.3.170
  44. Kim, J. G., Chung, U. S., Seo, S., Park, G. j., and Yoon, S. h., "Effect of storing method and film layers on the quality of round baled fresh rice straw silage", Journal of The Korean Society of Grassland and Forage Science, 21(2), pp. 75~80. (2001).
  45. Patterson, D., Mayne, C., Gordon, F., and Kilpatrick, D., "An evaluation of an inoculant/enzyme preparation as an additive for grass silage for dairy cattle", Grass and Forage Science, 52(3), pp. 325~335. (1997). https://doi.org/10.1111/j.1365-2494.1997.tb02363.x
  46. Song, T. H., Park, T. I., Park, H. H., Kim, Y. K., Park, J. C., Kang, C. S., Son, J. H., Kim, K. H., Cheong, Y. K., and Oh, Y. J., "Effect of film layers and storing period on the fermentation quality of whole crop barley silage", Journal of The Korean Society of Grassland and Forage Science, 35(1), pp. 6~11. (2015). https://doi.org/10.5333/KGFS.2015.35.1.6
  47. Aloba, T. A., Corea, E. E., Mendoza, M., Dickhoefer, U., and Castro-Montoya, J., "Effects of ensiling length and storage temperature on the nutritive value and fibre-bound protein of three tropical legumes ensiled alone or combined with sorghum", Animal Feed Science and Technology, 283, pp. 115172. (2022).
  48. Heron, S. J., Edwards, R. A., and McDonald, P., "Changes in the nitrogenous components of gamma-irradiated and inoculated ensiled ryegrass", Journal of the Science of Food and Agriculture, 37(10), pp. 979~985. (1986). https://doi.org/10.1002/jsfa.2740371005
  49. Triolo, J. M., Pedersen, L., Qu, H., and Sommer, S. G., "Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production", Bioresource Technology, 125, pp. 226~232. (2012). https://doi.org/10.1016/j.biortech.2012.08.079
  50. Buhle, L., Hensgen, F., Donnison, I., Heinsoo, K., and Wachendorf, M., "Life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems", Bioresource Technology, 111, pp. 230~239. (2012). https://doi.org/10.1016/j.biortech.2012.02.072
  51. Behera, S., Arora, R., Nandhagopal, N., and Kumar, S., "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass", Renewable and Sustainable Energy Reviews, 36, pp. 91~106. (2014). https://doi.org/10.1016/j.rser.2014.04.047
  52. Khan, M. U., and Ahring, B. K., "Lignin degradation under anaerobic digestion: Influence of lignin modifications-A review", Biomass and Bioenergy, 128, pp. 105325. (2019).
  53. Shao, L., Wang, T., Li, T., Lu, F., and He, P., "Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature", Bioresource Technology, 140, pp. 131~137. (2013). https://doi.org/10.1016/j.biortech.2013.04.081
  54. Yang, G., Zhang, P., Zhang, G., Wang, Y., and Yang, A., "Degradation properties of protein and carbohydrate during sludge anaerobic digestion", Bioresource Technology, 192, pp. 126~130. (2015). https://doi.org/10.1016/j.biortech.2015.05.076
  55. Kung Jr, L., Stokes, M. R., and Lin, C., "Silage additives", Silage Science and Technology, 42, pp. 305~360. (2003). https://doi.org/10.2134/agronmonogr42.c7
  56. Neureiter, M. S., J Teixeira PereiraLopez, C PerezPichler, HKirchmayr, RBraun, R., "Effect of silage preparation on methane yields from whole crop maize silages", In Proceedings of the 4th International Symposium on Anaerobic Digestion of Solid Waste, 31, pp. 109~115. (2005).
  57. Pakarinen, O., Lehtomaki, A., Rissanen, S., and Rintala, J., "Storing energy crops for methane production: Effects of solids content and biological additive", Bioresource Technology, 99(15), pp. 7074~7082. (2008). https://doi.org/10.1016/j.biortech.2008.01.007
  58. Luna-deRisco, M., Normak, A., and Orupold, K., "Biochemical methane potential of different organic wastes and energy crops from Estonia". (2011).
  59. Degola, L., Trupa, A., and Aplocina, E., "Forage quality and digestibility for calculation of enteric methane emission from cattle", In 15th International Scientific Conference, Engineering for Rural Development": Proceedings. (2016).
  60. Zhao, X., Liu, J., Liu, J., Yang, F., Zhu, W., Yuan, X., Hu, Y., Cui, Z., and Wang, X., "Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass", Bioresource Technology, 241, pp. 349~359. (2017). https://doi.org/10.1016/j.biortech.2017.03.183
  61. Di Girolamo, G., MarcoBarbanti, LorenzoAngelidaki, Irini., "Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield", Bioresource Technology, 147, pp. 152~159. (2013). https://doi.org/10.1016/j.biortech.2013.08.006
  62. Czubaszek, R., Wysocka-Czubaszek, A., Banaszuk, P., Zajac, G., and Wassen, M. J., "Grass from road verges as a substrate for biogas production", Energies, 16(11), pp. 4488. (2023).
  63. Nussbaum, H., "Effects of silage additives based on homo-or heterofermentative lactic acid bacteria on methane yields in the biogas processing", In Proceedings XVI International Silage conference Hameenlinna, Finland. The Scientific Agricultural Society of Finland, pp. 452~453. (2012).
  64. Xie, S., Frost, J., Lawlor, P. G., Wu, G., and Zhan, X., "Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion", Bioresource Technology, 102(19), pp. 8748~8755. (2011). https://doi.org/10.1016/j.biortech.2011.07.078
  65. Antonopoulou, G., Vayenas, D., and Lyberatos, G., "Biogas production from physicochemically pretreated grass lawn waste: Comparison of different process schemes", Molecules, 25(2), pp. 296. (2020).
  66. Khalil, E., Whitmore, T., Gamal-El-Din, H., El-Bassel, A., and Lloyd, D., "The effects of pesticides on anaerobic digestion processes", Environmental Technology, 12(6), pp. 471~475. (1991). https://doi.org/10.1080/09593339109385032
  67. Chakraborty, N., Sarkar, G., and Lahiri, S., "Effect of pesticide (Tara-909) on biomethanation of sewage sludge and isolated methanogens", Biomass and Bioenergy, 23(1), pp. 75~80. (2002). https://doi.org/10.1016/S0961-9534(02)00021-1
  68. Oh, S. Y., Park, N. B., Park, W. K., Chun, M. Y., and Kwon, S. I., "Effects of antimicrobials on methane production in an anaerobic digestion process", Korean Journal of Environmental Agriculture, 30(3), pp. 295~303. (2011). https://doi.org/10.5338/KJEA.2011.30.3.295