DOI QR코드

DOI QR Code

A Simple Design of an Imaging System for Accurate Spatial Mapping of Blood Oxygen Saturation Using a Single Element of Multi-wavelength LED

혈중 산소 포화도의 정확한 공간 매핑을 위한 다중 파장 LED 단일소자를 활용한 이미징 시스템 설계

  • Jun Hwan Kim (Department of Biomedical Engineering, Yonsei University) ;
  • Gi Yeon Yu (Department of Biomedical Engineering, Yonsei University) ;
  • Ye Eun Song (Department of Biomedical Engineering, Yonsei University) ;
  • Chan Yeong Yu (Department of Biomedical Engineering, Yonsei University) ;
  • Yun Chae Jang (Department of Biomedical Engineering, Yonsei University) ;
  • Riaz Muhammad (Department of Biomedical Engineering, Yonsei University) ;
  • Kay Thwe Htun (Department of Biomedical Engineering, Yonsei University) ;
  • Ahmed Ali (Department of Biomedical Engineering, Yonsei University) ;
  • Seung Ho Choi (Department of Biomedical Engineering, Yonsei University)
  • 김준환 (연세대학교 미래캠퍼스 의공학부) ;
  • 유기연 (연세대학교 미래캠퍼스 의공학부) ;
  • 송예은 (연세대학교 미래캠퍼스 의공학부) ;
  • 유찬영 (연세대학교 미래캠퍼스 의공학부) ;
  • 장윤채 (연세대학교 미래캠퍼스 의공학부) ;
  • 무하마드 리아즈 (연세대학교 미래캠퍼스 의공학부) ;
  • 케이 뜨웨 툰 (연세대학교 미래캠퍼스 의공학부) ;
  • 아메드 알리 (연세대학교 미래캠퍼스 의공학부) ;
  • 최승호 (연세대학교 미래캠퍼스 의공학부)
  • Received : 2023.12.03
  • Accepted : 2023.12.16
  • Published : 2023.12.31

Abstract

Pulse oximetry, a non-invasive technique for evaluating blood oxygen saturation, conventionally depends on isolated measurements, rendering it vulnerable to factors like illumination profile, spatial blood flow fluctuations, and skin pigmentation. Previous efforts to address these issues through imaging systems often employed red and near-infrared illuminations with distinct profiles, leading to inconsistent ratios of transmitted light and the potential for errors in calculating spatial oxygen saturation distributions. While an integrating sphere was recently utilized as an illumination source to achieve uniform red and near-infrared illumination profiles on the sample surface, its bulkiness presented practical challenges. In this work, we have enhanced the pulse oximetry imaging system by transitioning illumination from an integrating sphere to a multi-wavelength LED configuration. This adjustment ensures simultaneous emission of red and near-infrared light from the same position, creating a homogeneous illumination profile on the sample surface. This approach guarantees consistent patterns of red and near-infrared illuminations that are spatially uniform. The sustained ratio between transmitted red and near-infrared light across space enables precise calculation of the spatial distribution of oxygen saturation, making our pulse oximetry imaging system more compact and portable without compromising accuracy. Our work significantly contributes to obtaining spatial information on blood oxygen saturation, providing valuable insights into tissue oxygenation in peripheral regions.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF), grant-funded by the Korean government (MSIT) (No. 2022R1C1C1011328; 2022H1D3A2A02081592) and the Brain Korea 21 Four Program. This research was also supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) in 2023 (2022RIS-005). This work was also carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ015373)" Rural Development Administration, Republic of Korea.

References

  1. Fawzy A, Wu TD, Wang K, Sands KE, Fisher AM, Arnold Egloff SA, DellaVolpe JD, Iwashyna TJ, Xu Y, Garibaldi BT. Clinical Outcomes Associated With Overestimation of Oxygen Saturation by Pulse Oximetry in Patients Hospitalized With COVID-19. JAMA Network Open. 2023;6(8):1-11. https://doi.org/10.1001/jamanetworkopen.2023.30856
  2. Garcia-Gutierrez S, Unzurrunzaga A, Arostegui I, Quintana JM, Pulido E, Gallardo MS, Esteban C, IRYSS-COPD group. The Use of Pulse Oximetry to Determine Hypoxemia in Acute Exacerbations of COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2015;12(6):613-620. https://doi.org/10.3109/15412555.2014.995291
  3. Masip J, Gaya M, Paez J, Betbese A, Vecilla F, Manresa R, Ruiz P. Pulse Oximetry in the Diagnosis of Acute Heart Failure. Rev Esp Cardiol. 2012;65(10):879-884. https://doi.org/10.1016/j.recesp.2012.02.022
  4. Mas-Bargues C, Sanz-Ros J, Roman-Dominguez A, Ingles M, Gimeno-Mallench L, El Alami M, Vina-Almunia J, Gambini J, Vina J, Borras C. Relevance of oxygen concentration in stem cell culture for regenerative medicine. Int J Mol Sci. 2019;20(5):1-27. https://doi.org/10.3390/ijms20051195
  5. Yin Y, Shu S, Qin L, Shan Y, Gao J-H, Lu J. Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation. J Cereb Blood Flow Metab. 2021;41(9):2216-2228. https://doi.org/10.1177/0271678X21992896
  6. Manta C, Jain SS, Coravos A, Mendelsohn D, Izmailova ES. An evaluation of biometric monitoring technologies for vital signs in the era of COVID-19. Clin Transl Sci. 2020;13(6):1034-1044. https://doi.org/10.1111/cts.12874
  7. Tamura T. Current progress of photoplethysmography and for health monitoring. Biomed Eng Lett. 2019;9(1):21-36. https://doi.org/10.1007/s13534-019-00097-w
  8. Jubran A, Pulse oximetry. Intensive Care Med. 2004;30(11):2017-2020. https://doi.org/10.1007/s00134-004-2399-x
  9. Van Beers R, Jacobs M, Borgoo A, Hornikx M, Janssens S, Van der Tempel W, Borremans J. Accurate measurement of SpO2 and dermal skin hydration using a wearable miniaturized spectrometer. Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables III. 2022;1-7.
  10. Matsushita, K.; Aoki, K.; Kakuta, N.; Yamada, Y. Fundamental study of reflection pulse oximetry. Optical Review. 2003;10(5):482-487. https://doi.org/10.1007/s10043-003-0482-0
  11. Pothisarn W, Chewpraditkul W, Yupapin P. Noninvasive hemoglobin-measurement-based pulse oximetry. In Optics in Health Care and Biomedical Optics: Diagnostics and Treatment. Optics in Health Care and Biomedical Optics: Diagnostics and Treatment. 2002;498-504.
  12. Humphreys K, Markham C, Ward TE. A CMOS camera-based system for clinical photoplethysmographic applications. OptoIreland 2005: Imaging and Vision. 2005;88-95.
  13. Kumar M, Suliburk JW, Veeraraghavan A, Sabharwal A. PulseCam: A camera-based, motion-robust and highly sensitive blood perfusion imaging modality. Scientific Reports. 2020;10(4825):1-17. https://doi.org/10.1038/s41598-020-61576-0
  14. Moco AV, Stuijk S, De Haan G. Ballistocardiographic Artifacts in PPG Imaging. IEEE Transactions on Biomedical Engineering. 2015;63(9):1804-1811.
  15. Moco AV, Stuijk S, de Haan G. Motion robust PPG-imaging through color channel mapping. Biomed Opt Express. 2016;7(5):1737-1754. https://doi.org/10.1364/BOE.7.001737
  16. Mannheimer PD. The light-tissue interaction of pulse oximetry. Anesth. Analg. 2007;105(6):S10-S17. https://doi.org/10.1213/01.ane.0000269522.84942.54
  17. Torp KD, Modi P, Simon LV. Pulse oximetry. St. Petersburg Treasure Island (FL): StatPearls; 2022.
  18. Sun Y, Thakor N. Photoplethysmography revisited: From contact to noncontact, from point to imaging. IEEE Transactions on Biomedical Engineering. 2015;63(3):463-477. https://doi.org/10.1109/TBME.2015.2476337
  19. Vaqar A, Haque IR, Zaidi T. Spectroscopic Properties of Blood for Pulse Oximeter Design. ICBET: International Conference on Biomedical Engineering and Technology. 2019;217-222.
  20. Taylor-Williams M, Spicer G, Bale G, Bohndiek SE. Noninvasive hemoglobin sensing and imaging: Optical tools for disease diagnosis. SPIE. 2022;27(8):1-32. https://doi.org/10.1117/1.JBO.27.8.080901
  21. Nitzan M, Romem A, Koppel R. Pulse oximetry: Fundamentals and technology update. Medical Devices: Evidence and Research. 2014;7:231-239. https://doi.org/10.2147/MDER.S47319
  22. Smuda K, Gienger J, Honicke P, Neukammer J. Function of hemoglobin-based oxygen carriers: Determination of methemoglobin content by spectral extinction measurements. International Journal of Molecular Sciences. 2021;22(4):1-24. https://doi.org/10.3390/ijms22041753
  23. Casalino G, Castellano G, Zaza G. A mHealth solution for contactless self-monitoring of blood oxygen saturation. 2020 IEEE Symposium on Computers and Communications (ISCC). 2020;1-7.
  24. Rosa AdFG, Betini RC. Noncontact SpO2 measurement using Eulerian video magnification. IEEE Transactions on Instrumentation and Measurement. 2019;69(5):2120-2130. https://doi.org/10.1109/TIM.2019.2920183
  25. Kocsis L, Herman P, Eke A. The modified Beer-Lambert law revisited. Physics in Medicine and Biology. 2006;51(5):N91-N98. https://doi.org/10.1088/0031-9155/51/5/N02
  26. Selvaraju V, Spicher N, Wang J, Ganapathy N, Warnecke JM, Leonhardt S, Swaminathan R, Deserno TM. Continuous monitoring of vital signs using cameras: A systematic review. Sensors. 2022;22(11):1-37. https://doi.org/10.3390/s22114097
  27. Labati RD, Piuri V, Rundo F, Scotti F, Spampinato C. Biometric recognition of PPG cardiac signals using transformed spectrogram images. Pattern Recognition, Proceedings of the ICPR International Workshops and Challenges. 2021;244-257.
  28. Tian X, Wong C-W, Ranadive SM, Wu M. A Multi-Channel Ratio-of-Ratios Method for Noncontact Hand Video Based Monitoring Using Smartphone Cameras. IEEE Journal of Selected Topics in Signal Processing. 2022;16(2):197-207. https://doi.org/10.1109/JSTSP.2022.3152352
  29. Shao D, Liu C, Tsow F, Yang Y, Du Z, Iriya R, Yu H, Tao N. Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Transactions on Biomedical Engineering. 2015;63(6):1091-1098. https://doi.org/10.1109/TBME.2015.2481896
  30. Wu J, Gunther J, Jayet B, Ray N, Andersson-Engels S, Kainerstorfer JM. Self-calibrated pulse oximetry based on absorption changes in photon pathlength. European Conference on Biomedical Optics. 2021;1-3.
  31. Fan Q, Li K. Noncontact imaging plethysmography for accurate estimation of physiological parameters. Journal of Medical and Biological Engineering. 2017;37:675-685. https://doi.org/10.1007/s40846-017-0272-y
  32. Shao D, Liu C, Tsow F, Yang Y, Du Z, Iriya R, Yu H, Tao N. Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Transactions on Biomedical Engineering. 2016;63(6):1091-1098. https://doi.org/10.1109/TBME.2015.2481896
  33. Sun Y, Hu S, Azorin-Peris V, Kalawsky R, Greenwald S. Noncontact imaging photoplethysmography to effectively access pulse rate variability. Journal of Biomedical Optics. 2012;18(6):1-9. https://doi.org/10.1117/1.JBO.17.8.081411
  34. Okubo K. NIR hyperspectral imaging. In Transparency in Biology: Making the Invisible Visible. Berlin/Heidelberg, Germany: Springer; 2021;203-222.
  35. Muhammad R, Htun KT, Nettey-Oppong EE, Ali A, Jeon DK, Jeong H-W, Byun KM, Choi SH. Pulse Oximetry Imaging System Using Spatially Uniform Dual Wavelength Illumination. Sensors 2023;23(7):1-18. https://doi.org/10.3390/s23073723