DOI QR코드

DOI QR Code

Effect of Pulsed Electromagnetic Field Stimulation on TNF-α/IFN-γ induced inflammatory response in human skin keratinocytes HaCaT Cell to reduce inflammatory factors

인간 피부각질세포 HaCaT Cell에서 TNF-α/IFN-γ로 유도된 염증 반응에 대한 펄스형 전자기장(PEMF) 자극의 염증 인자 완화 효과

  • Jun Young Kim (Department of Biomedical Engineering, Yonsei University) ;
  • Chan Ho Park (Department of Anatomy, Yonsei University Wonju College of Medicine) ;
  • Chang Soon Park (Department of Biomedical Engineering, Yonsei University) ;
  • Yong Heum Lee (Department of Biomedical Engineering, Yonsei University)
  • 김준영 (연세대학교 의공학과) ;
  • 박찬호 (연세대학교 원주의과대학 해부학교실) ;
  • 박창순 (연세대학교 의공학과) ;
  • 이용흠 (연세대학교 의공학과)
  • Received : 2023.11.26
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

The purpose of this study was to observe cell death in human keratinocytes stimulated against the infectious cytokines TNF-α and IFN-γ, and to observe the expression of Phospho-NF-κB due to phosphorylation of IkB to confirm the mechanism of inhibiting the expression of inflammatory cytokines. As a result of cell viability analysis, differences in PEMF stimulation time were observed little by little after 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours, but there was no statistical significance according to PEMF stimulation time for each time (p>0.05). No significant difference was observed in the total amount of NF-κB present in the cytoplasm and nucleus, but a significant decrease in the expression of phosphorylated NF-κB was observed in the group exposed to PEMF stimulation for 24 hours (*p<0.05). The expression of IL-1β was observed in all inflammation-induced groups, and the concentration of IL-1β compared to α-Tubulin expression was reduced by about 54% in the PEMF-stimulated group for 24 hours compared to the control group (***p<0.001). As a result of the study, it is shown that PEMF stimulation does not negatively affect HaCaT cells from 0 to 48 hours and can inhibit the expression of inflammatory cytokines by inhibiting the pathway of NF-κB.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2022RIS-005)과 연세대학교 미래융합연구원(ICONS)의 지원을 통해 수행되었습니다.

References

  1. Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annual review of immunology. 2017;35:469-499.  https://doi.org/10.1146/annurev-immunol-051116-052215
  2. Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunologic research. 2006;36:127-136.  https://doi.org/10.1385/IR:36:1:127
  3. Ariotti S, Beltman JB, Chodaczek G, Hoekstra ME, Van Beek AE, Gomez ER, Ritsma L, Van RJ, Maree AF, Zal T. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proceedings of the National Academy of Sciences. 2012;109(48):19739-19744.  https://doi.org/10.1073/pnas.1208927109
  4. Schroder JM. Cytokine networks in the skin. Journal of investigative dermatology. 1995;105(1):S20-S24.  https://doi.org/10.1038/jid.1995.5
  5. Hanel KH, Cornelissen C, Luscher B, Baron JM. Cytokines and the skin barrier. International journal of molecular sciences. 2013;14(4):6720-6745.  https://doi.org/10.3390/ijms14046720
  6. Sebastiani S, Albanesi C, De Pita O, Puddu P, Cavani A, Girolomoni G. The role of chemokines in allergic contact dermatitis. Archives of dermatological research. 2002;293:552-559.  https://doi.org/10.1007/s00403-001-0276-9
  7. Nedoszytko B, Sokolowska WM, Ruckemann DK, Roszkiewicz J, Nowicki R. Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Advances in Dermatology and Allergology/Postepy Dermatologii i Alergologii. 2014;31(2):84-91.  https://doi.org/10.5114/pdia.2014.40920
  8. Campo GM, Avenoso A, Campo S, Angela DA, Ferlazzo AM, Calatroni A. TNF-α, IFN-γ, and IL-1β modulate hyaluronan synthase expression in human skin fibroblasts: Synergistic effect by concomital treatment with FeSO4 plus ascorbate. Molecular and cellular biochemistry. 2006;292:169-178.  https://doi.org/10.1007/s11010-006-9230-7
  9. Skurkovich B, Skurkovich S. Inhibition of IFN-γ as a method of treatment of various autoimmune diseases, including skin diseases. Cytokines as Potential Therapeutic Targets for Inflammatory Skin Diseases. 2006:1-27. 
  10. Van der ZH, De Ruiter L, Van Den BD, Dik W, Laman J, Prens E. Elevated levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 in hidradenitis suppurativa skin: a rationale for targeting TNF-α and IL-1β. British Journal of Dermatology. 2011;164(6):1292-1298.  https://doi.org/10.1111/j.1365-2133.2011.10254.x
  11. Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N. The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process. The Journal of Immunology. 2004;172(3):1848-1855.  https://doi.org/10.4049/jimmunol.172.3.1848
  12. Hijnen D, Knol EF, Gent YY, Giovannone B, Beijn SJ, Kupper TS, Bruijnzeel KCA, Clark RA. CD8+ T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22. Journal of Investigative Dermatology. 2013;133(4):973-979.  https://doi.org/10.1038/jid.2012.456
  13. Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunological reviews. 2011;242(1):233-246.  https://doi.org/10.1111/j.1600-065X.2011.01027.x
  14. Evers A, Lu Y, Duller P, Van Der VP, Kraaimaat FW, Van De KP. Common burden of chronic skin diseases? Contributors to psychological distress in adults with psoriasis and atopic dermatitis. British Journal of Dermatology. 2005;152(6):1275-1281.  https://doi.org/10.1111/j.1365-2133.2005.06565.x
  15. Leung DY. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. Journal of allergy and clinical immunology. 1995;96(3):302-319.  https://doi.org/10.1016/S0091-6749(95)70049-8
  16. Moynagh PN. The NF-κB pathway. Journal of cell science. 2005;118(20):4589-4592.  https://doi.org/10.1242/jcs.02579
  17. Yamamoto Y, Gaynor RB. Role of the NF-kB pathway in the pathogenesis of human disease states. Current molecular medicine. 2001;1(3):287-296.  https://doi.org/10.2174/1566524013363816
  18. Senftleben U, Karin M. The Ikk/nf-κb pathway. Critical care medicine. 2002;30(1):S18-S26.  https://doi.org/10.1097/00003246-200201001-00003
  19. Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor perspectives in biology. 2009;1(6):a001651. 
  20. Yamamoto Y, Gaynor RB. IκB kinases: key regulators of the NF-κB pathway. Trends in biochemical sciences. 2004;29(2):72-79.  https://doi.org/10.1016/j.tibs.2003.12.003
  21. Zhou D, Yu T, Chen G, Brown S, Yu Z, Mattson M, Thompson J. Effects of NF-κB1 (p50) targeted gene disruption on ionizing radiation-induced NF-κB activation and TNFα, IL-1α, IL-1β and IL-6 mRNA expression in vivo. International journal of radiation biology. 2001;77(7):763-772.  https://doi.org/10.1080/09553000110050047
  22. Hiscott J, Marois J, Garoufalis J, D'Addario M, Roulston A, Kwan I, Pepin N, Lacoste J, Nguyen H, Bensi G. Characterization of a functional NF-κB site in the human interleukin 1β promoter: evidence for a positive autoregulatory loop. Molecular and cellular biology. 1993;13(10):6231-6240.  https://doi.org/10.1128/mcb.13.10.6231-6240.1993
  23. Flodstroma M, Welsh N, Eizirik DL. Cytokines activate the nuclear factor κB (NF-κB) and induce nitric oxide production in human pancreatic islets. FEBS letters. 1996;385(1-2):4-6.  https://doi.org/10.1016/0014-5793(96)00337-7
  24. Meier Kriesche HU, Li S, Gruessner R, Fung J, Bustami RT, Barr M, Leichtman AB. Immunosuppression: evolution in practice and trends, 1994-2004. American Journal of Transplantation. 2006;6(5):1111-1131.  https://doi.org/10.1111/j.1600-6143.2006.01270.x
  25. Khurana A, Brennan DC. Current concepts of immunosuppression and side effects. Pathology of solid organ transplantation. 2010:11-30. 
  26. Kim JY, Lee JY, Lee JW, Lee SK, Park CS, Yang SJ, Lee YH. Evaluation of Atopic Dermatitis Improvement Caused by Low-Level, Low-Frequency Pulsed Electromagnetic Fields. Bioelectromagnetics. 2022;43(4):268-277.  https://doi.org/10.1002/bem.22405
  27. Ross CL, Zhou Y, McCall CE, Soker S, Criswell TL. The use of pulsed electromagnetic field to modulate inflammation and improve tissue regeneration: A review. Bioelectricity. 2019;1(4):247-259.  https://doi.org/10.1089/bioe.2019.0026
  28. Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani K. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PloS one. 2013;8(5):e65561. 
  29. Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Setti S, Cadossi R, Borea PA, Varani K. Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. Journal of Cellular Physiology. 2017;232(5):1200-1208.  https://doi.org/10.1002/jcp.25606
  30. Li S, Ni Z, Cong B, Gao W, Xu S, Wang C, Yao Y, Ma C, Ling Y. CCK-8 inhibits LPS-induced IL-1β production in pulmonary interstitial macrophages by modulating PKA, p38, and NF-κB pathway. Shock. 2007;27(6):678-686.  https://doi.org/10.1097/shk.0b013e3180ze26dd
  31. Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends in biochemical sciences. 2005;30(1):43-52.  https://doi.org/10.1016/j.tibs.2004.11.009
  32. Christian F, Smith EL, Carmody RJ. The regulation of NF-κB subunits by phosphorylation. Cells. 2016;5(1):12. 
  33. Yasuda T. Hyaluronan inhibits cytokine production by lipopolysaccharide-stimulated U937 macrophages through down-regulation of NF-κB via ICAM-1. Inflammation Research. 2007;56:246-253.  https://doi.org/10.1007/s00011-007-6168-5
  34. Colombo I, Sangiovanni E, Maggio R, Mattozzi C, Zava S, Corbett Y, Fumagalli M, Carlino C, Corsetto PA, Scaccabarozzi D. HaCaT cells as a reliable in vitro differentiation model to dissect the inflammatory/repair response of human keratinocytes. Mediators of inflammation. 2017;2017. 
  35. Wilson VG. Growth and differentiation of HaCaT keratinocytes. Epidermal Cells: Methods and Protocols. 2014:33-41. 
  36. Cai L, Qin X, Xu Z, Song Y, Jiang H, Wu Y, Ruan H, Chen J. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS omega. 2019;4(7):12036-12042.  https://doi.org/10.1021/acsomega.9b01142
  37. Kim H, Han TH, Lee SG. Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. Journal of ethnopharmacology. 2009;122(1):149-156.  https://doi.org/10.1016/j.jep.2008.12.011
  38. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkB kinase complex (IKK) contains two kinase subunits, IKKa and IKKb, necessary for IkB phosphorylation and NF-kB activation. Cell. 1997;91(2):243-252.  https://doi.org/10.1016/S0092-8674(00)80406-7
  39. Magnani M, Crinelli R, Bianchi M, Antonelli A. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB). Current drug targets. 2000;1(4):387-399.  https://doi.org/10.2174/1389450003349056
  40. Gilmore TD. The Rel/NF-κB signal transduction pathway: introduction. Oncogene. 1999;18(49):6842-6844. https://doi.org/10.1038/sj.onc.1203237