DOI QR코드

DOI QR Code

The Antifungal Efficacy of Extracts Derived from Kimchi Filtrates

  • JeungSun LEE (Dept. of Mortuary Science, College of Bio Convergence, Eulji University) ;
  • Seong-Soo CHA (Dept. of Food Science and Service, College of Bio-Convergence, Eulji University) ;
  • Min-Kyu KWAK (Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of Bio-Convergence, and Institute of Food and Nutrition Science, Eulji University)
  • 투고 : 2023.11.21
  • 심사 : 2023.12.25
  • 발행 : 2023.12.30

초록

Secondary metabolites in the culture filtrates of lactic acid bacteria offer varied chiral moieties, making them a valuable resource for drug design scaffolding. Our previous methodology included using a combination of anion exchange resins, Amberlite IRA-67 and Purolite A420S, to purify significant quantities of Lactobacillus plantarum LBP-K10 peptidyl compounds. However, current experimental evidence regarding the impact of native culture extracts and/or filtrates on pathogenic fungi in vivo/in vitro is insufficient. This study analyzed the antifungal properties of two different probiotic cultures: the CH2Cl2-extracted filtrate of Chinese cabbage kimchi (CH2Cl2-extracted CCKWLB and CH2Cl2-extracted CCKWOLB) and the non-extracted filtrate of Chinese cabbage kimchi (non-extracted CCKWLB and non-extracted CCKWOLB). The samples were divided into two groups: one group was inoculated with probiotics while the other group remained non-inoculated. Filtrates from both experimental groups were utilized for antifungal assays. The treatments employing CCKWLB, with an initial inoculation of Lb. plantarum LBP-K10 as a starter, demonstrated significant antifungal activity under various experimental conditions. Our study offers new perspectives on the antifungal properties of CH2Cl2-extracted kimchi filtrates, which are naturally produced by lactobacilli. The efficacy of antifungal compounds is supported by substantial evidence demonstrating their efficient uptake by cells and the antifungal properties exerted by metabolites.

키워드

과제정보

The authors also thank Cilic BioEngineering Sdn Bhd (CBE) in Taman Tawau, Sabah, Malaysia for supplying the G. boninense isolate (GMR3).

참고문헌

  1. Archer, A. C., & Halami, P. M. (2015). Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Applied Microbiology and Biotechnology, 99, 8113-8123. https://doi.org/10.1007/s00253-015-6679-x
  2. Bivi, M. R., Farhana, M. S. N., Khairulmazmi, A., & Idris, A. (2010). Control of Ganoderma boninense: A causal agent of basal stem rot disease in oil palm with endophyte bacteria in vitro. International Journal of Agriculture and Biology, 12, 833-839.
  3. Cheigh, H. S., & Park, K. Y. (1994). Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr, 34, 175-203. https://doi.org/10.1080/10408399409527656
  4. Chong, K. P., Rossall, S., & Atong, M. (2009). In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. Journal of Agricultural Science, 1, 15-20.
  5. Chuah, L.-O., Foo, H. L., Loh, T. C., Mohammed Alitheen, N. B., Yeap, S. K., Abdul Mutalib, N. E., . . . Yusoff, K. (2019). Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC complementary and alternative medicine, 19, 1-12. https://doi.org/10.1186/s12906-019-2528-2
  6. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology, 23, 130-135.
  7. Deepa, I., Kumar, S. N., Sreerag, R. S., Nath, V. S., & Mohandas, C. (2015). Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria. Frontiers in Microbiology, 6, 876.
  8. Fonzi, W. A., & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics, 134, 717-728. https://doi.org/10.1093/genetics/134.3.717
  9. Ji, K., Jang, N. Y., & Kim, Y. T. (2015). Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces. Journal of Microbiology and Biotechnology, 25, 1568-1577. https://doi.org/10.4014/jmb.1501.01077
  10. Jung, J. Y., Lee, S. H., & Jeon, C. O. (2014). Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Applied Microbiology and Biotechnology, 98, 2385-2393. https://doi.org/10.1007/s00253-014-5513-1
  11. Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J. W., Hahn, Y., . . . Jeon, C. O. (2011). Metagenomic analysis of kimchi, a traditional Korean fermented food. Applied and Environmental Microbiology, 77, 2264-2274. https://doi.org/10.1128/AEM.02157-10
  12. Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H. Y., Park, W. S., & Jeon, C. O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153, 378-387.
  13. Karanam, G., & Arumugam, M. K. (2020). Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo (-Pro-Tyr). Molecular Biology Reports, 47(5), 3347-3359. https://doi.org/10.1007/s11033-020-05407-5
  14. Kim, B. H., Lee, H. S., Jang, Y. A., Lee, J. Y., Cho, Y. J., & Kim, C.-i. (2009). Development of amino acid composition database for Korean foods. Journal of Food Composition and Analysis, 22, 44-52. https://doi.org/10.1016/j.jfca.2008.07.005
  15. Kumar, S. N., Lankalapalli, R. S., & Kumar, B. S. (2014). In vitro antibacterial screening of six proline-based cyclic dipeptides in combination with β-lactam antibiotics against medically important bacteria. Applied Biochemistry and Biotechnology, 173, 116-128. https://doi.org/10.1007/s12010-014-0808-3
  16. Kwak, M.-K., Liu, R., & Kang, S.-O. (2018). Antimicrobial activity of cyclic dipeptides produced by Lactobacillus plantarum LBP-K10 against multidrug-resistant bacteria, pathogenic fungi, and influenza A virus. Food Control, 85, 223-234. https://doi.org/10.1016/j.foodcont.2017.10.001
  17. Kwak, M.-K., Liu, R., Kim, M.-K., Moon, D., Kim, A. H., Song, S.-H., & Kang, S.-O. (2014). Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. Journal of Microbiology, 52, 64-70. doi:10.1007/s12275-014-3520-7
  18. Kwak, M.-K., Liu, R., Kwon, J.-O., Kim, M.-K., Kim, A. H., & Kang, S.-O. (2013). Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza A virus. Journal of Microbiology, 51, 836-843. doi:10.1007/s12275-013-3521-y
  19. Kwofie, M. K., Bukari, N., & Adeboye, O. (2020). Probiotics potential of yeast and lactic acid bacteria fermented foods and the impact of processing: a review of indigenous and continental food products. Advances in Microbiology, 10(09), 492.
  20. Li, H., Liu, L., Zhang, S., Cui, W., & Lv, J. (2012). Identification of antifungal compounds produced by Lactobacillus casei AST18. Current Microbiology, 65, 156-161. https://doi.org/10.1007/s00284-012-0135-2
  21. Lind, H., Sjogren, J., Gohil, S., Kenne, L., Schnurer, J., & Broberg, A. (2007). Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiology Letters, 271, 310-315. https://doi.org/10.1111/j.1574-6968.2007.00730.x
  22. Liu, R., Kim, A., Kwak, M.-K., & Kang, S.-O. (2017). Proline-Based Cyclic Dipeptides from Korean Fermented Vegetable Kimchi and from Leuconostoc mesenteroides LBP-K06 Have Activities against Multidrug-Resistant Bacteria. Frontiers in Microbiology, 8, 761. https://doi.org/10.3389/fmicb.2017.00761
  23. Strom, K., Sjogren, J., Broberg, A., & Schnurer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68, 4322-4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002
  24. Tan, H. K., Foo, H. L., Loh, T. C., Alitheen, N. B. M., & Rahim, R. A. (2015). Cytotoxic effect of proteinaceous postbiotic metabolites produced by Lactobacillus plantarum I-UL4 cultivated in different media composition on MCF-7 breast cancer cell. Malaysian Journal of Microbiology, 207-214.