DOI QR코드

DOI QR Code

The Effect of UTAUT, Dynamic Capabilities, Utilization of Smart Factory on the Intention to Continue Using: Technology Perception Moderating Effect

  • Jin-Kwon KIM (Department of Business Management, Tech University of Korea) ;
  • Kyung-Soo LEE (Department of Liberal arts, SeHan University of Korea)
  • Received : 2023.10.24
  • Accepted : 2023.11.06
  • Published : 2023.12.30

Abstract

Purpose: The purpose of this study was to identify the relationship between smart factory utilization and continued use intention between UTAUT, dynamic capabilities of smart factory construction companies and present the company's strategic direction. Research design, data, and methodology: In this study, a structured research model was derived to confirm the relationship between UTAUT, dynamic capabilities, smart factory utilization and continued use intention and the difference according to Technology perception. For analysis a total of 223 valid questionnaires from e-commerce users were used. Confirmatory factor analysis, correlation analysis, and structural equations were conducted to verify. Results: Both UTAUT, dynamic capabilities had a significant effect on smart factory utilization as well as continued use intention. It was found that the relationship between UTAUT, dynamic capabilities, smart factory utilization, and continued use intention. differed depending on the technology perception. Conclusions: Organizational members utilize the smart factory in anticipation of effects such as work performance and various improvements. Smart factory data will be used continuously when it is useful for business processes and operations. It is necessary to establish strategies and provide training to improve the technical level and capabilities of organizational members. Through this, a strategy is needed that can be continuously used by utilizing the information obtained through smart factory to improve work efficiency, productivity and efficiency increase is needed

Keywords

References

  1. Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological bulletin, 82(2), 261.
  2. Arnold, C., Kiel, D & Voigt, K. (2017). Innovative Business Models for the Industrial Internet of Things. BHM 162(9), 371-381. https://doi.org/10.1007/s00501-017-0667-7
  3. Boachie-Mensah, F. O., Acquah, I. S. K. (2015). The Effect of Innovation Types on the Performance of Small and Medium-sized Enterprises in the Sekondi-Takoradi Metropolis. Archives of Business Research. 3(3). 77-98. https://doi.org/10.14738/abr.33.1240
  4. Burke, R., Mussomeli, A., Laaper, S., Hartigan, M & Sniderman, B(2017). The Smart Factory: Responsive. Adaptive, Connected Manufacturing. Deloitte Insights, Deloitte University Press; 2017.
  5. Byun, D. H. (2016). Trend of Smart Factory and Model Factory Cases. The e-business studies. 17(4). 211-228. https://doi.org/10.20462/TeBS.2016.08.17.4.211
  6. Chang, H. J. (2016). An Analysis on the Effect of Government Supports for the R&D of SMEs: Focused on Technical, Economic, and Social Outcomes. Korean Society and Public Administration. 26(4), 195-218.
  7. Cho, I. J., Ahn, T. H & Kim, J. K. (2020). Effects of Smart Factory Quality Characteristics & Innovative Activities on Business Performance : Mediating Effect of Using Smart Factory. The Journals of Economics, Marketing & Management. 8(3). 23-36.
  8. Cho, I. J., Kim, J. K., Yang, J. C & Ahn, T. H. (2020). Effects of Smart Factory Quality Characteristics and Dynamic Capabilities on Business Performance: Mediating Effect of Recognition Response. Journal of Industrial Disribution & Business. 11(12). 17-28.
  9. Cho, Y. J. (2017). The strategy for Smart Factory of Korea in the era of the Industry 4.0. Communications of the Korean Institute of Information Scientists and Engineer. 35(6), 40-48.
  10. Choi, W. S., Kang, D. Y & Choi, S. J. (2017). Understanding Factors Influencing Usage and Purchase Intention of a VR Device: An Extension of UTAUT2. Korea Journal of Information Society. 18(3). 173-208.
  11. Davis, F. D. (1989), Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  12. Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic Capabilities: What are They? Strategic Management Journal, 21(10-11), 1105-1121. https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
  13. Engel, J., Blackwell, R., & P. W. Miniard. (1993), Consumer Behavior, New York: The Dryden Press, Fort Worth.
  14. He, Q. P. and J. Wang. (2018), Statistical process monitoring as a big data analytics tool for smart manufacturing, Journal of Process Control, 67(1). 35-43. https://doi.org/10.1016/j.jprocont.2017.06.012
  15. Hozdic, E. (2015). Smart Factory for Industry 4.0 A Review. International Journal of Modern Manufacturing Technologies. 2(1), 28-35.
  16. Kang, S. H & Kim, H. K. (2016). A Study on the User's Acceptance and Use of Easy Payment Service - Focused on the Moderating Effect of Innovation Resistance. Management & Information Systems Review. 35(2), 167-183. https://doi.org/10.29214/damis.2016.35.2.010
  17. Kim, H. G. (2019). An Empirical Study on Continuous Use Intention and Switching Intention of the Smart Factory. Journal of the Korea industrial information systems society. 24(2). 65-80.
  18. Kim, J. D., Song, Y. W & Cho, W. S. (2016). The Usage Needs and Adoption Intention of Manufacturing Big Data Technology in Small and Medium-sized Manufacturing Companies. Korean Corporation Management Review. 23(5). 47-68.
  19. Kim, J. D., Ji, S. Y & Ryu, K. H. (2018). A Study on Factors Affecting External Manufacturing Big Data Technology Transfer Performance in Small-and-Medium-Sized Manufacturing Firms: The Technology Transfer Cases of Electronics and Telecommunications Research Institute. The Journal of Information Technology and Architecture. 15(3). 307-327. https://doi.org/10.22865/JITA.2018.15.3.307
  20. Kim, J. D & Nam, T. W. (2019). A Study on the Factors influencing the Public Employees' Acceptance of the Fourth Industrial Revolution Technologies. Korean policy sciences review. 26(2). 29-63. https://doi.org/10.17000/kspr.26.3.201909.29
  21. Kim, J. R. (2020). Factors Affecting Intention to Introduce Smart Factory in SMEs - Including Government Assistance Expectancy and Task Technology Fit -. Journal of Venture Innovation. 3(2). 41-76. https://doi.org/10.22788/3.2.3
  22. Kim, J. K & Ahn, T. D. (2017). Effects of the fitness among Entrepreneurship, Dynamic capabilities and Innovation activities on Business performance. Journal of Digital Covergence. 15(1). 163-170.
  23. Kim, S.T & Chung, B. G. (2022). Effects of CEO Will and Employee Resistance to Innovation of SMEs on Smart Factory Adoption. Journal of Venture Innovation, 5(2). 111-127. https://doi.org/10.22788/5.2.8
  24. Kim, Y. C. (2011). A Study on Effect of Mobile Properties, IT Properties and Involvement on Satisfaction of Smartphone Application : Focused on Fashion Application. The e-business studies, 12(2). 49-77.
  25. Lee, H. G & Han, M. S. (2019). An Empirical Study on the Consumer Acceptance of Internet Primary Bank : The Application of UTAUT Model. The Journal of Business Education. 33(1). 59-87. https://doi.org/10.34274/KRABE.2019.33.1.003
  26. Lee, J. E & Sung, D. K. (2017). The Study on the Factors Influencing on the Behavioral Intention of Free Mobile Video Service : Focusing on the UTAUT2. Journal of communication research. 54(1), 258-313. https://doi.org/10.22174/JCR.2017.54.1.258
  27. Lee, J. G & Kim, J. H. (2020). Effects of Internal and External Characteristics of Korean SMEs on the Introduction of Smart Factory : An Exploratory Investigation on the Metal Processing Industry. Journal of Information Technology Services. 19(6). 97-117. https://doi.org/10.9716/KITS.2020.19.6.097
  28. Lee, J. R & Lee, C. W. (2022). A Study on the Effect of Critical Success Factors of Smart Factory on Business Performance. Logos Management Review. 20(2). 93-108.
  29. Lopez, F., Y. Shao, Z. M. Mao, J. Moyne, K. Barton, D. Tilbury(2018), A software-defined framework for the integrated management of smart manufacturing systems, Manufacturing Letters, 15(PA), 18-21. https://doi.org/10.1016/j.mfglet.2017.12.015
  30. Menezes, S., Creado, S & Zhong, R.Y. (2018). Smart Manufacturing Execution Systems for Small and Medium-sized Enterprises. The 51st CIRP Conference on Manufacturing Systems. 1009-1014.
  31. Miron, E., Erez, M & Naveh, E. (2004). Do Personal Characteristics and Cultural Values that Promote Innovation, Quality, and Efficiency Compete or Complement Each Other?. Journal of 0rganizational Behavior. 25(2). 175-199. https://doi.org/10.1002/job.237
  32. Myung, S. I & Kim, S. D. (2017). The design of Open IoT Platform based on oneM2M Standard Protocol. Journal of the Korea Institute Of Information and Communication Engineering. 21(10). 1943-1949. https://doi.org/10.6109/JKIICE.2017.21.10.1943
  33. Nam, S. T., Shin, S. Y & Chan, Y. (2014). A Meta-analysis and Review of External Factors based on the Technology Acceptance Model : Focusing on the Journals Related to Smartphone in Korea. Journal of the Korea Institute of Information and Communication Engineering. 18(4). 848-854. https://doi.org/10.6109/jkiice.2014.18.4.848
  34. Noh, K. S & Park, S. H. (2014). An Exploratory Study on Application Plan of Big Data to Manufacturing Execution System. Journal of Digital Convergence. 12(1). 305-311. https://doi.org/10.14400/JDPM.2014.12.1.305
  35. Oh, J. C. (2015). A Comparative Study on the Purchase of Mobile Application in Korea and China : Based on the UTAUT. The e-business studies, 16(6). 43-63. https://doi.org/10.15719/GEBA.16.6.201512.43
  36. Oh, J. H & Kim, J. D. (2019). A Study on Strategic Utilization of Smart Factory: Effects of Building Purposes and Contents on Continuous Utilization. Asia Pacific Journal of Samall Business. 41(4). 1-36. https://doi.org/10.36491/APJSB.41.4.1
  37. Oliver, R. L. (1997), Satisfaction: a behavioral perspective on the consumer, McGraw-Hill, International Editions.
  38. Park, I. S & Ahn, H, C. (2012). A Study on the User Acceptance Model of Mobile Credit Card Service based on UTAUT. The e-business studies, 13(3). 551-574. https://doi.org/10.15719/GEBA.13.3.201209.551
  39. Park, J. P. (2017). Analysis on Success Cases of Smart Factory in Korea : Leveraging from Large, Medium, and Small Size Enterprises. Journal of Digital Convergence. 15(5). 107-115. https://doi.org/10.14400/JDC.2017.15.5.107
  40. Park, S. B.(2016), Development of innovative strategies for the Korean manufacturing industry by use of the connected smart factory (CSF). Procedia Computer Science, 91(1). 744-750. https://doi.org/10.1016/j.procs.2016.07.067
  41. POSCO Research Institute (2015), A New Start for Industry 4.0, (June), POSRI Report.
  42. Ramakrishna, S., T. C. Khong, & T. K. Leong. (2017), Smart Manufacturing, Procedia Manufacturing, 12, 128-131. https://doi.org/10.1016/j.promfg.2017.08.017
  43. Seol, M. W., Choi, Y. L & Kim, S. G. (2014). Development of Digital Archives Using Open Source Software to Document Miryang Transmission Towers Construction Conflicts. Journal of Korean Society of Archives and Records Management. 14(4), 7-36. https://doi.org/10.14404/JKSARM.2014.14.4.007
  44. So, B. E & Shin, S. S. (2017). The Built of Smart Factory Using Sensors and Virtual Process Design. The Journal of The Korea Institute of Electronic Communication Sciences. 12(6). 1071-1080. https://doi.org/10.13067/JKIECS.2017.12.6.1071
  45. Son, H. J., Lee, S. W & Cho, M. H. (2014). Influential Factors of College Students' Intention to Use Wearable Device - An Application of the UTAUT2 Model. Korean Journal of Communication & Information. 68(4). 7-33.
  46. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic Capabilities and Strategic Management. Strategic Management Journal, 18(2). 509-533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
  47. Venkatesh, V. & Davis, F. D. (2000). A Theoretical Extension the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-20.
  48. Venkatesh, V., Morris, M. G. Davis, G. B. & Davis, F. D. (2003), User Acceptance of Information Technology: Toward a Unified View. MIS quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  49. Venkatesh, V., James, Y. L. Thong & Xin, X. (2012). Consumer Acceptance and Use of Information Technology : Extending the Unified Theory of Acceptance and Use of Technology, MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
  50. Venkatesh, V., James, Y. L. Thong & Xin, X. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead, Journal of the Association for Information Systems, 17(5), 328-376. https://doi.org/10.17705/1jais.00428
  51. Veza, I., M. Mladineo, & N. Gjeldum. (2015), Managing Innovative Production Network of Smart Factories, IFAC-Papers On Line, 48(3), 555-560. https://doi.org/10.1016/j.ifacol.2015.06.139
  52. Wang, C. L., & Ahmed, P. K. (2007). Dynamic Capabilities: A Review and Research Agenda. International Journal of Management Reviews, 9(1), 31-51. https://doi.org/10.1111/j.1468-2370.2007.00201.x
  53. Wang, J., Y. Ma, L. Zhang, R. X. Gao, & D. Wu. (2018), Deep learning for smart manufacturing: Methods and applications, Journal of Manufacturing Systems, 48(1), 144-156. https://doi.org/10.1016/j.jmsy.2018.01.003
  54. Wang, S., J. Wan, D. Li, & C. Zhang. (2016), Implementing Smart Factory of Industrie 4.0: An Outlook, International Journal of Distributed Sensor Networks, 4(1), 1-10.
  55. Wiktorsson, M., S. D. Noh, M. Bellgran, L & Hanson(2018), Smart Factories: South Korean and Swedish examples on manufacturing settings, Procedia Manufacturing, 25, 471-478. https://doi.org/10.1016/j.promfg.2018.06.128
  56. Woo, D. S., Moon, J. B & Yoo, W. J. (2013). A Study of the Satisfaction on the Social Networking Service Cognition to Personality Traits. The e-business studies. 14(2). 263-285. https://doi.org/10.15719/GEBA.14.2.201306.263
  57. Yang, S. H., Hwang, Y. S., Park, J. K. (2016). A Study on the Use of Fintech Payment Services Based on the UTAUT Model. Management and Economics Research Institute. 38(1), 183-209.
  58. Zollo, M., & Winter, S. G. (2002). Deliberate Learning and the Evolution of Dynamic Capabilities. Organization Science, 13(3): 339-351. https://doi.org/10.1287/orsc.13.3.339.2780