과제정보
The authors especially thank Karthik Vasudeva, _ Ismail Guvenc, and David Lopez Perez, for their previous works and valuable discussions on the theoretical analysis of the HO performance. This research was supported by "The Cross-Ministry Giga KOREA Project" grant funded by the Korea government (MSIT) (no. GK20P0500, Development of Ultra Low-Latency Radio Access Technologies for 5G URLLC Service).
참고문헌
- J. Zhu et al., Ultra dense networks: General introduction and design overview, In Signal Processing for 5G: Algorithms and Implementations, John Wiley & Sons, Chichester, UK, 2016, pp. 483-508.
- N. Bhushan et al., Network densification: The dominant theme for wireless evolution into 5G, IEEE Commun. Mag. 52 (2014), 82-89. https://doi.org/10.1109/MCOM.2014.6736747
- 3GPP R2-1808482, Remaining essential issue for NR SA Handover, Samsung, RAN2#102, May 2018.
- J. Kim et al., Design of cellular, satellite, and integrated systems for 5G and beyond, ETRI J. 42 (2020), no. 5, 669-685. https://doi.org/10.4218/etrij.2020-0156
- H. Shokri-Ghadikolaei et al., Millimeter wave cellular networks: A MAC layer perspective, IEEE Trans. Commun. 63 (2015), 3437-3458. https://doi.org/10.1109/TCOMM.2015.2456093
- H. Park et al., Handover mechanism in NR for ultra-reliable low-latency communications, IEEE Network 32 (2018), 41-47. https://doi.org/10.1109/mnet.2018.1700235
- I. Viering et al., Zero-zero mobility: intra-frequency handovers with zero interruption and zero failures, IEEE Netw. 32 (2018), 48-54. https://doi.org/10.1109/MNET.2018.1700223
- 3GPP TR 36.881, Study on Latency Reduction Techniques for LTE (Release 14), June 2016.
- 3GPP TR 36.839, E-UTRA; Mobility Enhancements in Heterogeneous Networks (Release 11), Dec. 2012.
- 3GPP TR 36.878, Study on performance enhancements for high speed scenario in LTE (Release 13), Jan. 2016.
- E. Calvanese Strinati et al., 5GCHAMPION-Disruptive 5G technologies for roll-out in 2018, ETRI J. 40 (2018), no. 1, 10-25. https://doi.org/10.4218/etrij.2017-0237
- Y. Kim et al., Feasibility of mobile cellular communications at millimeter wave frequency, IEEE J. Sel. Top. Signal Process. 10 (2016), 589-599. https://doi.org/10.1109/JSTSP.2016.2520901
- 3GPP TS 36.331, Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC), Sept. 2020.
- T. Jansen et al., Handover parameter optimization in LTE self-organizing networks, in Proc. IEEE Veh. Technol. Conf., Ottawa, ON, Canada, Sept. 2010.
- H. Chen et al., Mobility and handover management, In Heterogeneous Cellular Networks: Theory, Simulation And Deployment, Cambridge University Press, Cambridge, UK, 2013, pp. 245-283.
- A. Karandikar, N. Akhtar, and M. Mehta, Mobility management in LTE heterogeneous networks, Springer, Singapore, Singapore, 2017.
- 3GPP RP-090452, LS on Conclusions for LTE Mobility Study Item, RAN#57, Mar. 2009.
- 3GPP TS 36.300, E-UTRA and E-UTRAN; overall description; Stage2.
- 3GPP TR 36.842, Study on small cell enhancements for E-UTRA and E-UTRAN; higher layer aspects, 2013.
- J. Acharya et al., Dense small cell deployments, In Heterogeneous Networks in LTE-Advanced, John Wiley & Sons, Chichester, UK, 2014, pp. 205-229.
- 3GPP TS 38.300, NR; NR and NG-RAN Overall Description; Stage 2.
- 3GPP RP-200738, WI summary for WI: Even further mobility enhancement in E-UTRAN, China Telecom, RAN#88, June 2020.
- 3GPP RP-201274, WI summary for WI: NR mobility enhancements, Intel Corporation, RAN#88, June 2020.
- 3GPP R2-1818048, Simulation Results on Conditional Handover, ETRI, RAN2#104, Nov. 2018.
- 3GPP RP-201195, RAN2 CRs to Even further mobility enhancement in E-UTRAN, RAN2, RAN#88, June 2020.
- 3GPP RP-201177, RAN2 CRs to NR Mobility Enhancements, RAN2, RAN#88, June 2020.
- Q. Kuang et al., Mobility performance of LTE-advanced heterogeneous networks with control channel protection, Proc. World Telecommun. Congr. (WTC 2014), Berlin, Germany, June 2014.
- K. Adachi et al., A distributed resource reservation scheme for handover failure reduction, IEEE Wirel. Commun. Lett. 4 (2015), 537-540. https://doi.org/10.1109/LWC.2015.2453987
- X. Zhang et al., Dynamic user equipment-based hysteresisadjusting algorithm in LTE femtocell networks, IET Commun. 8 (2014), 3050-3060. https://doi.org/10.1049/iet-com.2014.0277
- S. Lee et al., Mobility enhancement of dense small-cell network, Proc. Ann. IEEE Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2015, pp. 297-303.
- 3GPP R2-134171, Effect of Handover Delay on Handover Failure and Ping-Pong in Dense HetNet, Samsung, RAN2#84, Nov. 2013.
- 5G PPP METIS II project, Deliverable D6.2, 5G Asynchronous Control Functions and Overall Control Plane Design (Apr. 2017).
- H. Martikainen et al., On the basics of conditional handover for 5G mobility, Proc. IEEE Ann. Int. Symp. Pers., Indoor Mob. Radio Commun. (PIMRC), Bologna, Italy, Sept. 2018.
- T. Deng et al., A network assisted fast handover scheme for high speed rail wireless networks, Proc. IEEE Veh. Technol. Conf. (VTC Spring), Nanjing, China, May 2016.
- C. Lee et al., Prediction-based conditional handover for 5G mmwave networks: A deep-learning approach, IEEE Veh. Technol. Mag. 15 (2020), 54-62. https://doi.org/10.1109/mvt.2019.2959065
- D. Lopez-Perez, I. Guvenc, and X. Chu, Theoretical analysis of handover failure and ping-pong rates for heterogeneous networks, Proc. Int. Workshop Small Cell Wirel. Netw., Ottawa, ON, Canada, June 2012, pp. 6774-6779.
- K. Vasudeva, M. Simsek, and I. Guvenc, Analysis of handover failures in HetNets with Layer-3 filtering, Proc. IEEE Wirel. Commun. Netw. Conf.erence (WCNC), Istanbul, Turkey, Apr. 2014, pp. 2647-2652.
- K. Vasudeva et al., Analysis of handover failures in heterogeneous networks with fading, IEEE Trans. Veh. Technol. 66 (2017), 6060-6074. https://doi.org/10.1109/TVT.2016.2640310
- H. Park et al., Two-step handover for LTE HetNet mobility enhancements, Proc. Int. Conf. ICT Converg. (ICTC), Jeju, Republic of Korea, Oct. 2013, pp. 763-766.
- 3GPP R2-134432, Early HO command with ping-pong avoidance, further information, ETRI, RAN2#84, Nov. 2013.
- H. Park et al., LTE mobility enhancements for evolution into 5G, ETRI J. 37 (2015) no. 6, 1065-1076. https://doi.org/10.4218/etrij.15.0115.0529
- D. Lopez-Perez, X. Chu, and I. Guvenc, On the expanded region of Picocells in heterogeneous networks, IEEE J. Sel. Top. Signal Process. 6 (2012), 281-294. https://doi.org/10.1109/JSTSP.2012.2190381
- 3GPP R2-114950, Discussion on the mobility performance enhancement for co-channel HetNet deployment, ZTE, RAN2#75bis, Oct. 2011.
- 3GPP TS 36.133, E-UTRA; Requirements for support of radio resource management.
- OPNET. https://www.riverbed.com/sg/products/steelcentral/opnet.html
- D. Liu et al., User association in 5G networks: A survey and an outlook, IEEE Commun. Surv. Tutor. 18 (2016), 1018-1044. https://doi.org/10.1109/COMST.2016.2516538
- D. Xenakis et al., Mobility management for femtocells in LTE-advanced: key aspects and survey of handover decision algorithms, IEEE Commun. Surv. Tutor. 16 (2014), 64-91. https://doi.org/10.1109/SURV.2013.060313.00152
- N. Amirrudin et al., Analysis of handover performance in LTE femtocells network, Wirel. Pers. Commun. 97 (2017), 1929-1946. https://doi.org/10.1007/s11277-017-4222-3
- M. G. Khoshkholgh and V. C. M. Leung, Coverage analysis of Max-SIR cell association in HetNets under Nakagami fading, IEEE Trans. Veh. Technol. 67 (2018), 2420-2438. https://doi.org/10.1109/tvt.2017.2772035
- 3GPP TR 37.817, Study on enhancement for data collection for NR and ENDC (Release 17), to be released in Mar. 2022.
- M. Nguyen and S. Kwon, Machine learning-based mobility robustness optimization under dynamic cellular networks, IEEE Access 9 (2021), 77830-77844. https://doi.org/10.1109/ACCESS.2021.3083554
- A. Mohajer, M. Bavaghar, and H. Farrokhi, Mobility-aware load balancing for reliable self-organization networks: Multiagent deep reinforcement learning, Reliab. Eng. Syst. Saf. 202 (2020), 107056. https://doi.org/10.1016/j.ress.2020.107056