Acknowledgement
This work was supported by the ICT R&D program of MSIP/IITP (2017-0-00306, Development of Multimodal Sensor-based Intelligent Systems for Outdoor Surveillance Robots).
References
- J.-W. Choi, D. Moon, and J.-H. Yoo, Robust multi-person tracking for real-time intelligent video surveillance, ETRI J. 37 (2015), no. 3, 551-561. https://doi.org/10.4218/etrij.15.0114.0629
- S. Meghana, T. V. Nikhil, R. Murali, S. Sanjana, R. Vidhya, and K. J. Mohammed, Design and implementation of surveillance robot for outdoor security, (Proc. IEEE International Conference on Recent Trends in Electronics, Information Communication Technology, Bangalore, India), May 2017, pp. 1679-1682.
- P. Chakravarty, A. M. Zhang, R. Jarvis, and L. Kleeman, Anomaly detection and tracking for a patrolling robot, (Australasian Conference on Robotics and Automation, Brisbane, Australia). Dec. 2007.
- C. Zhang, Q. Zhan, Q. Wang, H. Wu, T. He, and Y. An, Autonomous dam surveillance robot system based on multi-sensor fusion, Sensors 20 (2020), no. 4. https://doi.org/10.3390/s20041097
- D. D. Paola, A. Milella, G. Cicirelli, and A. Distante, An autonomous mobile robotic system for surveillance of indoor environments, Int. J. Adv. Robotic Syst. 7 (2010), no. 1. https://doi.org/10.5772/7254
- M. Ma, S. M. Preum, M. Y. Ahmed, W. Tarneberg, A. Hendawi, and J. A. Stankovic, Data sets, modeling, and decision making in smart cities: A survey, ACM Trans. Cyber-Phys. Syst. 4 (2019), no. 2, 1-28. https://doi.org/10.1145/3355283
- M. Grgic, K. Delac, and S. Grgic, Scface-surveillance cameras face database, Multimedia Tools Appl. 51 (2011), no. 3, 863-879. https://doi.org/10.1007/s11042-009-0417-2
- Z. Zhang, Y. Song, and H. Qi, Age progression/regression by conditional adversarial autoencoder, (IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA), July 2017. https://doi.org/10.1109/CVPR.2017.463
- R. Rothe, R. Timofte, and L. V. Gool, Deep expectation of real and apparent age from a single image without facial landmarks, Int. J. Comput. Vision 126 (2018), no. 2-4, 144-157. https://doi.org/10.1007/s11263-016-0940-3
- K. Chen and J.-K. Kamarainen, Pedestrian density analysis in public scenes with spatiotemporal tensor features, IEEE Trans. Intell. Transp. Syst. 17 (2016), no. 7, 1968-1977. https://doi.org/10.1109/TITS.2016.2516586
- H. Idrees, I. Saleemi, C. Seibert, and M. Shah, Multi-source multi-scale counting in extremely dense crowd images, (IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA), June 2013, pp. 2547-2554.
- R. Guerrero-Gomez-Olmedo, B. Torre-Jimenez, R. L opezSastre, S. Maldonado-Bascon, and D. O. Noro Rubio, Extremely overlapping vehicle counting, (Iberian Conference on Pattern Recognition and Image Analysis, Spain), June 2015. https://doi.org/10.1007/978-3-319-19390-8_48
- A. Patron-Perez, M. Marszalek, I. Reid, and A. Zisserman, Structured learning of human interactions in tv shows, IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012), no. 12, 2441-2453. https://doi.org/10.1109/TPAMI.2012.24
- K. Soomro, A. R. Zamir, and M. Shah, Ucf101: A dataset of 101 human actions classes from videos in the wild, 2012, arXiv preprint arXiv:1212.0402.
- P. Foggia, A. Saggese, and M. Vento, Real-time fire detection for video surveillance applications using a combination of experts based on color, shape and motion, IEEE Trans. Circ. Syst. Video Technol. 25 (2015), 1545-1556. https://doi.org/10.1109/TCSVT.2015.2392531
- Z. Dong, Y. Wu, M. Pei, and Y. Jia, Vehicle type classification using a semisupervised convolutional neural network, IEEE Trans. Intell. Transp. Syst. 16 (2015), no. 4, 2247-2256. https://doi.org/10.1109/TITS.2015.2402438
- J. Arrospide, L. Salgado, and M. Nieto, Video analysis-based vehicle detection and tracking using an mcmc sampling framework, EURASIP J. Adv. Sig. Process. 2012 (2012), no. 1, 1-20. https://doi.org/10.1186/1687-6180-2012-1
- Y. Bi, C. Lin, H. Zhou, P. Yang, X. Shen, and H. Zhao, Time-constrained big data transfer for SDN-enabled smart city, IEEE Commun. Mag. 55 (2017), no. 12, 44-50. https://doi.org/10.1109/mcom.2017.1700236
- J.-Y. Lee and W. Yu, Robust self-localization of ground vehicles using artificial landmark, (International Conference on Ubiquitous Robots and Ambient Intelligence, Kuala Lumpur, Malaysia), Nov. 2014, pp. 303-307.
- J. Redmon and A. Farhadi, Yolov3: An incremental improvement, 2018. https://doi.org/10.48550/arXiv.1804.02767
- J.-Y. Lee, S. Choi, and J. Lim, Detection of high-risk intoxicated passengers in video surveillance, (IEEE International Conference on Advanced Video and Signal Based Surveillance, Auckland, New Zealand), Nov. 2018, pp. 1-6.
- H. Shin and J.-Y. Lee, Pedestrian video data abstraction and classification for surveillance system, (International Conference on Information and Communication Technology Convergence, Jeju, Rep. of Korea), Oct. 2018. https://doi.org/10.1109/ICTC.2018.8539426
- W. S. Park, and Y. B. Kim, Anomaly detection in particulate matter sensor using hypothesis pruning generative adversarial network, ETRI J. 43 (2021), 511-523. https://doi.org/10.4218/etrij.2020-0052
- H. Shin and K. Na, Anomaly detection algorithm based on global object map for video surveillance system, (International Conference on Control, Automation and Systems, Busan, Rep. of Korea), Oct. 2020. https://doi.org/10.23919/ICCAS50221.2020.9268258
- H. Shin and K. Na, Anomaly detection using elevation and thermal map for security robots, (International Conference on Information and Communication Technology Convergence, Jeju, Rep. of Korea), Oct. 2020. https://doi.org/10.1109/ICTC49870.2020.9289470
- K. Lee, K. Lee, H. Lee, and J. Shin, A simple unified framework for detecting out-of-distribution samples and adversarial attacks, (Proceedings of International Conference on Neural Information Processing Systems, Montreal, Canada), 2018, pp. 7167-7177.
- T. Uhm, G.-D. Bae, J. Lee, and Y.-H. Choi, Multi-modal sensor calibration method for intelligent unmanned outdoor security robot, (Proceedings of the Sixth International Conference on Green and Human Information Technology), 2019, pp. 215-220.
- G.-D. Bae, T. Uhm, Y.-H. Choi, and J.-H. Hwang, Study on multi-modal sensor system based sematic navigation map building, (International Conference on Control, Automation and Systems, Busan, Rep. of Korea), Oct. 2020, pp. 1195-1197.
- M. F. Sabokrou and M. Hoseini, Video anomaly detection and localisation based on the sparsity and reconstruction error of auto-encoder, Electron. Lett. 52 (2016), no. 13, 1122-1124. https://doi.org/10.1049/el.2016.0440
- S. R. Kaiming He and J. Sun, Deep residual learning for image recognition, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA), 2016. https://doi.org/10.1109/CVPR.2016.90
- L. M. Gao Huang and K. Q. Weinberger, Densely connected convolutional networks, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA), 2017. https://doi.org/10.1109/CVPR.2017.243