Acknowledgement
This study was funded by Natural Science Foundation of Zhejiang Province in China under Grant LQ18G010001.
References
- C. Couch and A. Dennemann, Urban regeneration and sustainable development in britain, Cities 17 (2000), no. 2, 137-147. https://doi.org/10.1016/S0264-2751(00)00008-1
- L. E. Cohen and M. Felson, Social change and crime rate trends: a routine activity approach, Am. Sociol. Rev. 44 (1979), no. 4, 588-608. https://doi.org/10.2307/2094589
- D. B. Cornish and R. V. Clarke, The Reasoning Criminal: Rational Choice Perspectives on Offending, Transaction Publishers, New Jersey, 2014.
- X. Y. Zhao and J. Tang, Modeling temporal-spatial correlations for crime prediction, (Proceedings of the ACM Conference on Information and Knowledge Management, Singapore), 2017, pp. 497-506.
- H. J. Wang, D. Kifer, C. Graif, and Z. H. Li, Crime rate inference with big data, (Proceedings of the International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA), 2016, pp. 635-644.
- H. J. Wang, H. X. Yao, D. Kifer, C. Graif, and Z. H. Li, Nonstationary model for crime rate inference using modern urban data, IEEE Trans. Big Data 5 (2019), no. 2, 180-194. https://doi.org/10.1109/tbdata.2017.2786405
- X. Y. Zhao and J. L. Tang, Crime in urban areas: a data mining perspective, ACM SIGKDD Explor. Newslett. 20 (2018), no. 1, 1-12. https://doi.org/10.1145/3229329.3229331
- W. Gorr, A. Olligschlaeger, and Y. Thompson, Short-term forecasting of crime, Int. J. Forecast. 19 (2003), no. 4, 579-594. https://doi.org/10.1016/S0169-2070(03)00092-X
- P. Chen, H. Yuan, and X. Shu, Forecasting crime using the ARIMA model, (Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Jinan China), 2008, pp. 627-630.
- E. Cesario, C. Catlett, and D. Talia, Forecasting crimes using autoregressive models, (Proceedings of the International Conference on Dependable, Autonomic and Secure Computing, Pervasive Intelligence and Computing, Big Data Intelligence and Computing and Cyber Science and Technology Congress, Auckland, New Zealand), 2016, pp. 795-802.
- J. H. Yan and M. M. Hou, Predicting time series of theft crimes based on LSTM network, Data Anal. Knowl. Disc. 4 (2020), no. 11, 84-91.
- L. Anselin, J. Cohen, D. Cook, W. Gorr, and G. Tita, Spatial analyses of crime, Criminal Justice: Measurement and Analysis of Crime and Justice (USA) (D Duffe), US Department of Justice, Office of Justice Programs, National Institute of Justice, 2000, pp. 213-262.
- C. Graif and R. J. Sampson, Spatial heterogeneity in the effects of immigration and diversity on neighborhood homicide rates, Homicide Studies 13 (2009), no. 3, 242-260. https://doi.org/10.1177/1088767909336728
- C. Kadar, J. Iria, and I. Pletikosa, Exploring Foursquare-derived features for crime prediction in New York City, (Proceedings of Urban Computing Workshop of the ACM International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA), 2016.
- H. Wang and Z. Li, Region representation learning via mobility flow, (Proceedings of the 26th ACM International Conference on Information and Knowledge Management, Singapore), 2017, pp. 237-246.
- C. Kadar, B. R. Roses, and I. Pletikosa, Measuring ambient population from location-based social networks to describe urban crime, (Proceedings of the 9th International Conference on Social Informatics, Oxford, United Kingdom), 2017, pp. 521-535.
- C. Kadar and I. Pletikosa, Mining large-scale human mobility data for long-term crime prediction, EPJ Data Sci. 7 (2018), no. 26, 1-27. https://doi.org/10.1140/epjds/s13688-017-0128-2
- G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, Self-exciting point process modeling of crime, J. Am. Stat. Assoc. 106 (2011), no. 493, 100-108. https://doi.org/10.1198/jasa.2011.ap09546
- M. L. Lin, J. Gao, H. Z. Huang, and D. Y. Yuan, A model of crime intelligence prediction based on a hybrid model of spatiotemporal sequence, J. Intell. 37 (2018), no. 9, 27-31.
- C. Catlett, E. Cesario, D. Talia, and A. Vinci, Spatio-temporal crime predictions in smart cities: A data-driven approach and experiments, Pervasive Mob. Comput. 53 (2019), 62-74. https://doi.org/10.1016/j.pmcj.2019.01.003
- B. Yang, L. Liu, M. X. Lan, Z. L. Wang, H. L. Zhou, and H. J. Yu, A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery, Int. J. Geogr. Inf. Sci. 34 (2020), no. 9, 1740-1764. https://doi.org/10.1080/13658816.2020.1737701
- K. Leong and A. Sung, A review of spatio-temporal pattern analysis approaches on crime analysis, Int. e-J. Crim. Sci. 9 (2015), 1-33.
- City of chicago data portal. Available from: https://data.cityofchicago.org
- S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997), no. 8, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- X. Li, L. Peng, X. J. Yao, S. L. Cui, Y. Hu, C. Z. You, and T. H. Chi, Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation, Environ. Pollut. 231 (2017), 997-1004. https://doi.org/10.1016/j.envpol.2017.08.114
- S. Lin, G. Wang, and S. Zhang, Time series prediction based on support vector regression, Inf. Technol. J. 5 (2006), no. 2, 533-537.