References
- Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB, CRC Press, Boca Raton, FL, USA, 2017.
- J. Lian, Z. Vatansever, M. Noshad, and M. Brandt-Pearce, Indoor visible light communications, networking, and applications, J. Phys.: Photon. 1 (2019), no. 1, 1-28. https://doi.org/10.1113/jphysiol.1878.sp000001
- M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, A comparative survey of optical wireless technologies: Architectures and applications, IEEE Access 6 (2018), 9819-9840. https://doi.org/10.1109/access.2018.2792419
- J. Perez, F. I. Chicharro, B. Ortega, and J. Mora, On the evaluation of an optical OFDM radio over FSO system with IM-DD for high-speed indoor communications, in Proc. IEEE Int. Conf. Transparent Opt. Netw. (Catalonia, Spain), 2017, pp. 1-4.
- Y. Qiu, H. H. Chen, and W. X. Meng, Channel modeling for visible light communications-a survey, Wirel. Commun. Mob. Comput. 16 (2016), 2016-2034. https://doi.org/10.1002/wcm.2665
- K. Lee, H. Park, and J. R. Barry, Indoor channel characteristics for visible light communications, IEEE Commun. Lett. 15 (2011), no. 2, 217-219. https://doi.org/10.1109/LCOMM.2011.010411.101945
- F. Miramirkhani and M. Uysal, Channel modeling and characterization for visible light communications, IEEE Photon. J. 7 (2015), no. 6, 7905616. https://doi.org/10.1109/JPHOT.2015.2504238
- S. M. Curuk, and M. Kimyaci, The impact of configuration on channel characteristics in visible light communication, in Proc. IEEE Glob. Power, Energy Commun. Conf. (Nevsehir, Turkey), 2019, pp. 56-61.
- J. J. Tana, C. Q. Zou, S. H. Du, and J. T. Tan, Simulation of MIMO channel characteristics for indoor visible light communication with LEDs, Optik 125 (2014), 44-49. https://doi.org/10.1016/j.ijleo.2013.06.071
- J. Ding, K. Wang, and Z. Xu, Impact of LED array simplification on indoor visible light communication channel modeling, in Proc. Int. Symp. Commun. Syst., Netw. Digit. Sign (Manchester, UK), 2014, pp. 1159-1164.
- D. Ding and X. Ke, A new indoor VLC channel model based on reflection, Opt. Lett. 6 (2010), no. 4, 295-298. https://doi.org/10.1007/s11801-010-0028-1
- M. Kowalczyk and J. Siuzdak, Channel modeling and characterization for VLC indoor transmission systems based on MMC ray tracing method, in Proc. Photonics Appl. Astron., Commun., Ind., High-Energy Phys. Exp. (Wilga, Poland), 2018, pp. 1-9.
- S. Long, M. A. Khalighi, M. Wolf, S. Bourennane, and Z. Ghassemlooy, Investigating channel frequency selectivity in indoor visible-light communication systems, IET Optoelectron. 10 (2016), no. 3, 80-88. https://doi.org/10.1049/iet-opt.2015.0015
- Y. Yang, Z. Zhu, C. Guo, and C. Feng, Power efficient LED placement algorithm for indoor visible light communication, Opt. Express 28 (2020), no. 24 36389-36402. https://doi.org/10.1364/oe.410502
- A. M. Vegni and M. Biagi, Optimal LED placement in indoor VLC networks, Opt. Express 27 (2019), no. 6, 8504-8519. https://doi.org/10.1364/oe.27.008504
- B. R. Mendoza, S. Rodriguez, R. Perez-Jimenez, A. Ayala, and O. Gonzalez, Comparison of three non-imaging angle-diversity receivers as input sensors of nodes for indoor infrared wireless sensor networks: Theory and simulation, Sensors 16 (2016), no. 7, 1-18. https://doi.org/10.1109/JSEN.2015.2493739
- F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, Modified Monte Carlo scheme for high-efficiency simulation of the impulse response on diffuse IR wireless indoor channels, Electron. Lett. 34 (1998), no. 19, 1819-1820. https://doi.org/10.1049/el:19981173
- M. Kimyaci and S. M. Curuk, Channel in multiple transmitter visible light communication, Academic Platf. J. Eng. Sci. 9 (2021), no. 1, 10-18.
- S. M. Nlom, A. R. Ndjiongue, and K. Ouahada, Cascaded PLC-VLC channel: an indoor measurements campaign, IEEE Access 6 (2018), 25230-25239. https://doi.org/10.1109/access.2018.2831625
- R. C. Kizilirmak, Impact of repeaters on the performance of indoor visible light communications, Turkish J. Electr. Eng. Comput. Sci. 23 (2015), 1159-1172. https://doi.org/10.3906/elk-1212-22
- J. Grubor, S. Randel, K. D. Langer, and J. W. Walewski, Broadband information broadcasting using LED-based interior lighting, J. Light. Technol. 26 (2008), no. 24, 3883-3892. https://doi.org/10.1109/JLT.2008.928525
- J. Ding and Z. Xu, Performance of indoor VLC and illumination under multiple reflections, in Proc. Int. Conf. Wirel. Commun. Signal Process. (WCSP), (Hefei, China), 2014, pp. 1-6.
- X. Yang and A. Fapojuwo, Performance analysis of hexagonal cellular networks in fading channels, Wirel. Commun. Mob. Comput. 16 (2015), no. 7, 850-867. https://doi.org/10.1002/wcm.2573
- M. I. S. Chowdhury, W. Zhang, and M. Kavehrad, Combined deterministic and modified Monte Carlo method for calculating impulse responses of indoor optical wireless channels, J. Light. Technol. 32 (2014), no. 18, 3132-3148. https://doi.org/10.1109/JLT.2014.2339131
- J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, Simulation of multipath impulse response for indoor wireless optical channels, IEEE J. Sel. Areas Commun. 11 (1993), no. 3, 367-379. https://doi.org/10.1109/49.219552
- S. S. Muhammad, Delay profiles for indoor diffused visible light communication, in Proc. Int. Conf. Telecommun. (Graz, Austria), 2015, pp. 1-5.
- R. Mitran, and M. Stanic, Delay spread evaluation of HF channels based on ray tracing, in Proc. IEEE Int. Black Sea Conf. Commun. Netw. (Varna, Bulgaria), 2016, pp. 1-5.
- A. Al-Kinani, C. X. Wang, H. Haas, and Y. Yang, Characterization and modeling of visible light communication channels, in Proc. IEEE Veh. Technol. Conf. (Nanjing, China), 2016, pp. 1-5.