DOI QR코드

DOI QR Code

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu (Internet of Things Research Laboratory, Department of Computer Engineering, Faculty of Computer and Information Sciences, Sakarya University) ;
  • Al-Hubaishi, Mohammed (Internet of Things Research Laboratory, Department of Computer and Information Engineering, Institute of Natural Sciences, Sakarya University) ;
  • Ceken, Celal (Internet of Things Research Laboratory, Department of Computer Engineering, Faculty of Computer and Information Sciences, Sakarya University)
  • Received : 2020.02.11
  • Accepted : 2021.05.04
  • Published : 2022.02.01

Abstract

The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.

Keywords

Acknowledgement

The authors would like to acknowledge that this work is supported by the Internet of Things Research Laboratory at Sakarya University (http://www.iotlab.sakarya.edu.tr).

References

  1. D. Evans, The internet of things how the next evolution of the internet is changing everything, CISCO White Paper (2011), 1-11, doi: 10.1109/IEEESTD.2007.373646.
  2. G. Sharma, Implementation of information and communication technology for human rights awareness and promotion, HighTech Innov. J. 1 (2020), no. 1, 33-38, doi: 10.28991/hij2020-01-01-05.
  3. A. Al-Fuqaha, et al., Internet of things: A survey on enabling technologies, protocols, and applications, IEEE Commun. Surv. Tutor. 17 (2015), no. 4, 2347-2376, doi: 10.1109/COMST.2015.2444095.
  4. F. Xhafa, Internet of things: Engineering cyber physical human systems, Int. Things 1-2 (2018), 1, doi: 10.1016/S2542-6605(18)30099-4.
  5. A. A. Mutlag, et al., Enabling technologies for fog computing in healthcare IoT systems, Future Gener. Comput. Syst. 90 (2019), 62-78, doi: 10.1016/j.future.2018.07.049.
  6. A. Mavrogiorgou et al., Internet of medical things (Iomt): Acquiring and transforming data into hl7 fhir through 5g network slicing, Emerg. Sci. J. 3 (2019), no. 2, 64-77, doi: 10.28991/esj-2019-01170.
  7. G. Yang et al., IoT-based remote pain monitoring system: From device to cloud platform, IEEE J. Biomed. Heal. Inform. 22 (2017), no. 6, 1711-1719, doi: 10.1109/JBHI.2017.2776351.
  8. S. B. Baker, W. Xiang, and I. Atkinson, Internet of things for smart healthcare: Technologies, challenges, and opportunities, IEEE Access 5 (2017), 26521-26544, doi: 10.1109/ACCESS.2017.2775180.
  9. M. M. Alam et al., A survey on the roles of communication technologies in IoT-Based personalized healthcare applications, IEEE Access 6 (2018), 36611-36631, doi: 10.1109/ACCESS.2018.2853148.
  10. T. S. Chu, A. Y. Chua, and E. L. Secco, A wearable MYO gesture armband controlling sphero BB-8 robot, HighTech Innov. J. 1 (2020), no. 4, 179-186, doi: 10.28991/hij-2020-01-04-05.
  11. D. C. Yacchirema et al., A smart system for sleep monitoring by integrating IoT with big data analytics, IEEE Access 6 (2018), 35988-36001, doi: 10.1109/ACCESS.2018.2849822.
  12. F. Firouzi et al., Internet-of-things and big data for smarter healthcare: From device to architecture, applications and analytics, Future Gener. Comput. Syst. 78 (2018), 583-586. https://doi.org/10.1016/j.future.2017.09.016
  13. A. Iqbal et al., Integration of next generation IIoT with blockchain for the development of smart industries, Emerg. Sci. J. 4 (2020), no. Special Issue, 1-17, doi: 10.28991/esj-2020-SP1-01.
  14. G. Manogaran et al., A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system, Future Gener. Comput. Syst. 82 (2018), 375-387, doi: 10.1016/j.future.2017.10.045.
  15. M. Ge, H. Bangui, and B. Buhnova, Big data for internet of things: A survey, Future Gener. Comput. Syst. 87 (2018), 601-614, doi: 10.1016/J.FUTURE.2018.04.053.
  16. A. Yassine et al., IoT big data analytics for smart homes with fog and cloud computing, Future Gener. Comput. Syst. 91 (2019), 563-573, doi: 10.1016/j.future.2018.08.040.
  17. X. Meng et al., MLlib: Machine learning in apache spark, J. Mach. Learn. Res. 17 (2016), 1-7, doi: 10.1145/2882903.2912565.
  18. W. Zhang et al., Shuffle-efficient distributed locality sensitive hashing on spark, in Proc. IEEE Conf. Comput. Commun. Workshops (San Francisco, CA, USA), Apr. 2016, pp. 766-767, doi: 10.1109/INFCOMW.2016.7562179.
  19. X. Liao, et al., An enforcement of real time scheduling in spark streaming, in Proc. Int. Green Sustain. Comput. Conf. (Las Vegas, NV, USA), Dec. 2016, pp. 1-6, doi: 10.1109/IGCC.2015.7393730.
  20. D. Cheng et al., Adaptive scheduling parallel jobs with dynamic batching in spark streaming, IEEE Trans. Parallel Distrib. Syst. 29 (2018), no. 12, 2672-2685, doi: 10.1109/TPDS.2018.2846234.
  21. C. Ceken, A. Al-Shaikhli, and M. Al-Hubaishi, Integrating software-defined networking (SDN) approach into wireless sensor and actuator networks (WSAN), Internet of Things Research Laboratory, Sakarya University, June 2018.
  22. V. Kaul, S. Enslin, and S. A. Gross, History of artificial intelligence in medicine, Gastrointest. Endosc. 92 (2020), no. 4, 807-812, doi: 10.1016/j.gie.2020.06.040.
  23. Z. Ebrahimi et al., A review on deep learning methods for ECG arrhythmia classification, Expert Syst. Appl.: X 7 (2020), 100033, doi: 10.1016/j.eswax.2020.100033.
  24. O. Yildirim, et al., Arrhythmia detection using deep convolutional neural network with long duration ECG signals, Comput. Biol. Med. 102 (2018), 411-420, doi: 10.1016/j.compbiomed.2018.09.009.
  25. O. Yildirim, R. S. Tan, and U. R. Acharya, An efficient compression of ECG signals using deep convolutional autoencoders, Cogn. Syst. Res. 52 (2018), 198-211, doi: 10.1016/j.cogsys.2018.07.004.
  26. U. R. Acharya, et al., Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network, Inform. Sci. 405 (2017), 81-90, doi: 10.1016/j.ins.2017.04.012.
  27. M. M. A. Rahhal, et al., Deep learning approach for active classification of electrocardiogram signals, Inform. Sci. 345 (2016), 340-354, doi: 10.1016/j.ins.2016.01.082.
  28. M. Al-Hubaishi, C. Ceken, and A. Al-Shaikhli, A novel energy-aware routing mechanism for SDN-enabled WSAN, Int. J. Commun. Syst. 32 (2018), no. 17, e3724, doi: 10.1002/dac.3724.
  29. F. Aktas, C. Ceken, and Y. E. Erdemli, IoT-based healthcare framework for biomedical applications, J. Med. Biol. Eng. 38 (2018), 966-979, doi: 10.1007/s40846-017-0349-7.
  30. N. Garg, Apache Kafka, 2014.
  31. Apache Spark, Apache SparkTM-Unified analytics engine for big data, spark.apache.org, 2018, https://spark.apache.org/[retrieved Oct. 21, 2018].
  32. A. M. Salem, K. Rekab, and J. A. Whittaker, Prediction of software failures through logistic regression, Inf. Softw. Technol. 46 (2004), no. 12, 781-789, doi: 10.1016/j.infsof.2003.10.008.
  33. L. Ganz, 54-Electrocardiography, in Goldman's Cecil Medicine, 24th ed., vol. 1, Saunders, Philadelphia, PA, USA, 2012, pp. 272-278, doi: 10.1016/B978-1-4377-1604-7.00054-3.
  34. M. G. Kaya et al., Coronary ischemia induced Wolf Parkinson White syndrome, Int. J. Cardiol. 129 (2008), no. 1, 3-4, doi: 10.1016/j.ijcard.2007.05.089.
  35. B. Surawicz et al., AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part III: Intraventricular conduction disturbances a scientific statement from the American heart association electrocardiography and arrhythmias committee, council on clinical cardiology; the American college of cardiology foundation; and the heart rhythm society endorsed by the international society for computerized electrocardiology, Circulation 119 (2009), no. 10, e235-e240, doi: 10.1161/CIRCULATIONAHA.108.191095.
  36. B. H. Williams, UCI machine learning repository: Character trajectories data set, 2008, https://archive.ics.uci.edu/ml/datasets/arrhythmia [retrieved Oct. 26, 2018].