DOI QR코드

DOI QR Code

Interference and noise analysis for hybrid FSO/RF-based 6G mobile backhaul

  • Soyinka, Nath (Division of ECE, Netaji Subhas Institute of Technology, Faculty of Technology, University of Delhi) ;
  • Shree Prakash, Singh (Dept. of ECE, Netaji Subhas University of Technology (previously NSIT)) ;
  • Sujata, Sengar (Dept. of ECE, Netaji Subhas University of Technology (previously NSIT))
  • Received : 2022.05.25
  • Accepted : 2022.10.21
  • Published : 2022.12.10

Abstract

Optical wireless communication, or free space optics, is a promising solution for backhauls in sixth-generation mobile systems. However, the susceptibility of optical links to weather conditions has led to FSO links being furnished with radio frequency (RF) backups. These Hybrid FSO/RF systems provide enhanced link availability but lead to RF resource wastage. Cognitive radio technology, in contrast, is well known for its optimal use of RF resources and may be combined with an FSO link to create a Cognitive Hybrid FSO/RF system. This work uses such a system to analyze a configuration for a mobile backhaul in sixth-generation mobile systems. This configuration can seamlessly coexist with established large scale RF cellular networks. The performance of this configuration is analyzed with respect to outage probability and average bit error by considering the impact of optical channel turbulence, misalignment loss, RF interference, and noise. Mathematical closed-form expressions are verified by simulations.

Keywords

References

  1. H.-J. Song and N. Lee, Terahertz communications: Challenges in the next decade, IEEE Trans. Terahertz Sci. Technol. 12 (2022), no. 2, 105-117. https://doi.org/10.1109/TTHZ.2021.3128677
  2. Ericsson White Paper, 6G-Connecting a cyber-physical world, 2022. Available from: https://www.ericsson.com/en/6g [last accessed May 2022].
  3. D. Roeland, K. Raizer, V. Berggren, P. Ohlen, and N. Linder, Cognitive networks-An introduction and outlook for the future, 2022. Available from: https://www.ericsson.com/en/blog/2022/1/cognitive-networks-6g [last accessed May 2022].
  4. Nokianewsroom, 6G explained, 2021. Available from: https://www.nokia.com/about-us/newsroom/articles/6g-explained/ [last accessed May 2022].
  5. Samsung Research, Samsung unveils 6G spectrum white paper and 6G research findings, 2022. Available from: https://news. samsung.com/global/samsung-unveils-6g-spectrum-whitepaper-and-6g-research-findings [last accessed May 2022].
  6. Huawei 6G Research Team, 6G: The next horizon, Available from https://www.huawei.com/en/technology-insights/futuretechnologies/6g-the-next-horizon [last accessed May 2022].
  7. White paper, 6G: The next horizon White Paper. Available from: https://www-file.huawei.com/-/media/corp2020/pdf/tech-insights/1/6g-white-paper-en.pdf?la%3Den [last accessed May 2022].
  8. Press release, Nokia to lead the EU's 6G project Hexa-X, 2020. Available from: https://www.nokia.com/about-us/news/releases/2020/12/07/nokia-to-lead-the-eus-6g-project-hexa-x/ [last accessed May 2022].
  9. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, The road towards 6G: A comprehensive survey, IEEE Open J. Commun. Soc. 2 (2021), 334-366.
  10. J. Mitola, Cognitive radio architecture evolution, Proc. IEEE 97 (2009), no. 4, 626-641. https://doi.org/10.1109/JPROC.2009.2013012
  11. J. Mitola, Software radios: Survey, critical evaluation and future directions, IEEE Aerosp. Electron. Syst. Mag. 8 (1993), no. 4, 25-36. https://doi.org/10.1109/62.210638
  12. X. Liu, K.-Y. Lam, F. Li, J. Zhao, L. Wang, and T. S. Durrani, Spectrum Sharing for 6G Integrated Satellite-Terrestrial Communication Networks Based on NOMA and CR, IEEE Netw. 35 (2021), no. 4, 28-34.
  13. T. R. Raddo, S. Rommel, B. Cimoli, C. Vagionas, D. PerezGalacho, E. Pikasis, E. Grivas, K. Ntontin, M. Katsikis, D. Kritharidis, and E. Ruggeri, Transition technologies towards 6G networks, J. Wireless Com. Netw. 2021 (2021), 100.
  14. A. Akbulut, H. G. Ilk, and F. Ari, Design, availability and reliability analysis on an experimental outdoor FSO/RF communication system, (Proceedings of 2005 7th International Conference Transparent Optical Networks, Barcelona, Catalonia), 2005, pp. 403-406.
  15. I. E. Lee, Z. Ghassemlooy, W. P. Ng, V. Gourdel, M. A. Khalighi, S. Zvanovec, and M. Uysal, Practical implementation and performance study of a hard-switched hybrid FSO/RF link under controlled fog environment, (9th International Symposium on Communication Systems, Networks and Digital Sign (CSNDSP), Manchester, UK), 2014, pp. 368-373.
  16. D. B. da Costa and M. D. Yacoub, Dual-hop DF relaying systems with multiple interferers and subject to arbitrary Nakagami- m fading, IET Electron. Lett. 47 (2011), no. 17, 999-1001. https://doi.org/10.1049/el.2011.1668
  17. M. Derakhshani and T. Le-Ngoc, Aggregate interference and capacity-outage analysis in a cognitive radio network, IEEE Trans. Vehic. Technol. 61 (2012), no. 1, 196-207. https://doi.org/10.1109/TVT.2011.2174464
  18. S. Kusaladharma, P. Herath, and C. Tellambura, Aggregate interference analysis for interweave cognitive networks, (IEEE 80th Vehicular Technology Conference, Vancouver, Canada), 2014, pp. 1-5.
  19. S. Macdonald, D. C. Popescu, and O. Popescu, A hybrid Framework for spectrum sharing in cognitive radio systems with dynamic users, IEEE Commun. Lett. 23 (2019), no. 10, 1871-1874. https://doi.org/10.1109/lcomm.2019.2926461
  20. S. Nath, S. K. Shrivastava, S. Sengar, and S. P. Singh, Novel architectures for efficient RF usage in Hybrid FSO/RF system, (IEEE International Conference on Advanced Networks and Telecommunications Systems, Indore, India), 2018, pp. 1-6.
  21. S. Nath, S. Sengar, S. K. Shrivastava, and S. P. Singh, Impact of atmospheric turbulence pointing error and traffic pattern on the performance of cognitive hybrid FSO/RF system, IEEE Trans. Cognit. Commun. Netw. 5 (2019), no. 4, 1194-1207. https://doi.org/10.1109/tccn.2019.2952116
  22. A. Touati, A. Abdaoui, F. Touati, M. Uysal, and A Bouallegue, On the effects of combined atmospheric fading and misalignment on the hybrid FSO/RF transmission, IEEE/OSA J. Opt. Commun. Netw. 8 (2016), no. 10, 715-725. https://doi.org/10.1364/JOCN.8.000715
  23. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, SPIE Press, Washington, USA, 2005.
  24. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, Mathematical model for the irradiance PDF of a laser beam propagating through turbulent media, Opt. Eng. 40 (2001), 1554-1562. https://doi.org/10.1117/1.1386641
  25. E. Zedini, I. S. Ansari, and M. S. Alouini, Performance analysis of mixed Nakagami-m and Gamma-Gamma dual-hop FSO transmission systems, IEEE Photon. J. 7 (2015), no. 1, 1-20.
  26. H. A. Suraweera, D. S. Michalopoulos, and C. Yuen, Performance analysis of fixed gain relay systems with a single interferer in Nakagami-m fading channels, IEEE Trans. Vehic. Technol. 61 (2012), no. 3, 1457-1463. https://doi.org/10.1109/TVT.2012.2184311
  27. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic, New York, 2007.