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1. IntroductIon

The theoretical and experimental studies have shown that 

the natural and man-made hazards can trigger abnormal 

disturbances in the electron concentration of the ionosphere 

that are known as the traveling ionospheric disturbance 

(TID). The mechanism of hazard-induced anomalies has 

been described by the wave structures, which propagate 
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ABStrAct

Numerous research revealed a strong association between the ionospheric perturbations and various natural hazards. 

The ionospheric measurements from Global Navigation Satellite System (GNSS) observations provide the state of electron 

contents in the ionosphere that contributes to investigate the source events. In this study, two geophysical events occurred 

on 23 January 2018, the 7.9 Mw earthquake in Alaska and Kusatsu-Shiranesan volcanic eruption in Japan, are examined 

to characterize the fingerprint of each event in the ionosphere. Firstly, we extracted the Total Electron Content (TEC) from 

GNSS measurements, then isolated disturbed wave signatures from the TEC measurements that is referred to as a traveling 

ionospheric disturbance (TID). As TIDs are short-term ionospheric variations, the major trend of GNSS TEC measurements 

should be properly removed. We applied a natural neighbor interpolation method together with a leave-one-out cross 

validation technique for detrending. After detrending the TEC, the remaining signals are further enhanced by applying a 

band-pass filter and TIDs are detected from them. Finally, the detected TIDs are verified as the response of the ionosphere 

to Kusatsu-Shiranesan volcanic eruption and Gulf of Alaska earthquake which propagated through the ionosphere with an 

average velocity of 530 m/s and 724 m/s, respectively. In addition, a coherence analysis is conducted to discriminate between 

the signatures from a volcanic explosion and an earthquake. The analysis reveals the TID waveforms from each single event 

are highly correlated, while a low correlation is found between the TIDs from the earthquake and explosion. This study 

supports the claim that different geophysical events induce the distinctive characteristics of TIDs that are detectable by the 

ionospheric measurements of GNSS.
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through the ionosphere, couple with its ionized or neutral 

contents, and result in generation of TIDs. Depending 

on the characteristics of the induced perturbations in the 

ionosphere, the TIDs can be distinguished as large-scale, 

medium-scale, and short-scale (Jacobson et al. 1995, Rieger 

& Leitinger 2002, Vlasov et al. 2011). The large-scale TIDs 

(LSTID) propagate with high velocity about 1 – 2 km/s and 

duration of more than 1 hour. The velocity of medium-scale 

TIDs (MSTID) varies between 200 m/s – 1 km/s with a period 

of about 10 – 60 minutes. The propagation velocity and 

duration of short-scale TIDs (SSTID) is usually lower than 200 

m/s which lasts for a few minutes.

To characterize TIDs excited by natural or man-made 

hazards, a variety of ionospheric monitoring techniques can 

be applied including high-frequency Doppler sounding, 
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ionosonde, Faraday rotation measurements extracted from 

polarized electromagnetic signals, and more recently the 

Global Navigation Satellite System (GNSS). Among all the 

above-mentioned techniques, GNSS has become highly 

affordable (e.g., Mannucci et al. 1998, Occhipinti et al. 2013, 

Park et al. 2014, Reddy & Seemala 2015, Savastano et al. 

2017) due to its worldwide availability, high sampling rate 

of measurements, and improved capability in modernized 

GNSS offered by multiple constellations.

The ionospheric perturbations caused by strong earth-

quakes has been investigated for several decades (Calais 

& Minster 1995, 1998, Afraimovich et al. 2001, Artru et al. 

2004, Astafyeva & Afraimovich 2006, Shinagawa et al. 2007, 

Choosakul et al. 2009, Jin et al. 2010, Heki 2011, Astafyeva 

et al. 2013, Occhipinti et al. 2013, Park et al. 2014, Catherine 

et al. 2017). Calais & Minster (1995) applied the Global 

Positioning System (GPS) derived TECs to investigate the 

ionospheric impacts due to 1994 Northbridge earthquake. 

They found the generated shock-acoustic waves propagated 

upward from the focal area in a narrow cone of zenith 

angles. Shinagawa et al. (2007) explained the earthquake-

induced ionospheric variations by resonance of acoustic 

waves in the vicinity of the epicenter. Choosakul et al. (2009) 

reported a periodic TEC fluctuation after the 2004 Sumatra 

earthquake. Astafyeva et al. (2013) related the intensity of 

TEC perturbations to the magnitude of earthquakes where 

the greater the magnitude, the more intense TEC disturbance 

expected. Perevalova et al. (2014) stated that the earthquakes 

with magnitude of greater than 6.5 Mw can induce significant 

disturbances in the ionosphere based on their findings from 

the earthquakes between the years 1965-2013. Catherine et 

al. (2017) found the ionospheric disturbances affected by the 

propagation direction of 7.8 Mw 2015 Gorkha earthquake 

and demonstrated a consistency between the TEC waveforms 

and the focal mechanism of the earthquake.

Besides the earthquakes, volcanic eruptions can gener-

ate noticeable variations of the electron density in the 

ionosphere. The ionospheric response to volcanic eruptions 

was first revealed by Cheng & Huang (1992) for 1991 Mount 

Pinatubo explosion. Cheng & Huang (1992) used ionospheric 

sounding data to detect volcano-induced perturbations 

which were characterized by a propagation velocity of 131 

– 259 m/s and period of 16 – 32 minutes. Since then, several 

studies also detected the ionospheric fluctuations caused 

by volcanic eruptions (de Ragone et al. 2004, Heki 2006, 

Dautermann et al. 2009, Komjathy et al. 2012, Lin 2013). de 

Ragone et al. (2004) studied 13 different volcanic eruptions 

of level 2 – 5 occurred within the years of 1960 – 1980. They 

identified a decrement in hourly F2 critical frequency 

(foF2) and an increment in F layer virtual height (h’F) data 

for 60% of the cases and concluded that the detection of 

eruption-induced wave structures is highly dependent on 

the volcanic intensity. By utilizing GPS-derived TECs, Heki 

(2006) detected ionospheric disturbances about 12 minutes 

after the 2004 Asama Volcano eruption where the TIDs 

propagated with a period of 1.25 minutes and velocity of 1.1 

km/s. Dautermann et al. (2009) observed the atmospheric 

perturbations induced by 2003 Soufrière Hills volcano about 

18 minutes after the primary eruption with spectral peaks at 

1 and 4 mHz and horizontal velocity of 624 m/s. Lin (2013) 

applied two-dimensional principal component analysis to 

detect the TEC anomalies induced by 2013 Mexico's Colima 

volcanic eruption.

In addition to natural hazards, man-made events also 

lead the ionospheric perturbations that are shown in (Park 

et al. 2011, Yang et al. 2012, Zhang & Tang 2015, Savastano 

et al. 2019). Park et al. (2011) investigated the response of 

ionosphere to the 2009 North Korean underground nuclear 

explosion (UNE) and suggested the GPS-derived TEC as a 

reliable tool for determining its epicenter and detecting the 

ionospheric disturbances. Yang et al. (2012) applied wavelet 

analysis to localize the TIDs triggered by the 2006 and 2009 

North Korean UNE. Their experiments revealed that only the 

2009 explosion induced high-frequency perturbations with 

characteristics of 2 – 5 minutes in duration and 297 – 1322 m/

s propagation velocity, while both explosions induced low-

frequency disturbances with period of 3 – 12 minutes and 

velocity of 75 – 453 m/s. Zhang & Tang (2015) also verified 

two different types of TIDs induced by the 2009 North Korean 

UNE, namely high-frequency TIDs with a period of 1 – 2 

minutes and velocity of 95 – 586 m/s and low-frequency TIDs 

with a period of 2 – 5 minutes and the velocity of 92 – 483 m/s.

TIDs can be generated by various events besides the 

abovementioned ones that add challenges to distinguish 

the TIDs associated with a particular event. Indeed, the 

distinctive mechanism of geophysical hazards releases 

different energy and wave structures and the ionospheric 

response to different events may vary. Therefore, it is critical 

to discriminate TIDs induced from different types of events. 

In this study, we selected two events occurred on the same 

day. The Gulf of Alaska earthquake and Kusatsu-Shirane 

volcanic eruption, both occurred on 23 January 2018. Because 

they occurred on the same day, the background ionospheric 

condition is nearly same in a global scale, and this allows a 

fair comparison between TIDs occurred by two events. The 

following sections describe the signal processing methods 

of TID detection and characterization. For an effective TID 

detection, we propose a new approach of detrending TEC 

based on natural neighborhood interpolation and leave-one-

out technique. The properties of detected TIDs induced by 
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each event are analyzed and compared their similarity and 

dissimilarity between the TIDs from two events.

2. tId dEtEctIon

GNSS-derived TEC is one of most commonly used 

observables for monitoring the ionospheric responses to 

natural hazards. The TEC measurements involve the wave 

signatures as the consequence of many geophysical activities 

which are more pertinent to small scale TEC variations on 

top of the background ionospheric condition. The small scale 

TEC variation related to a particular geophysical event can 

be considered as the TIDs generated by acoustic, acoustic-

gravity, or gravity waves depending on a source event. By 

analyzing the small-scale TEC variations, the TIDs can be 

detected through a proper signal processing. One of most 

critical steps is the removal of dominant trend of TEC time 

series. A trend of TEC measurements on a continuous data 

span are determined in different ways, which is challenging 

due to the dynamic nature of the ionosphere. In this study, 

we applied an optimal detrending method to each line-of-

sight TEC measurement for detecting TID waveforms from 

the remaining TEC, which is referred to as residual TEC. 

The TID waveforms are then determined by examining the 

fluctuations of residual TEC.

2.1 TEC Extraction from GNSS Observations

TEC is precisely measured from the dual-frequency carrier 

phase GPS GNSS observations by forming a geometry-free 

(GF) (or ionospheric) linear combination of GNSS dual-

frequency carrier phase observables (Klobuchar 1985, 

Hoffman-Wellenhof et al. 2008). The carrier phase GF 

combination is given by
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diagrams. In three-dimensional space, R3, the natural neighbor interpolation can be equated as 
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Although the numerical derivative method was confirmed as an effective approach to detect 
the MSTIDs by several case studies (Park et al. 2011, 2014), this approach can be affected by a 
data sampling rate. The high sampling rate data may consider the high frequency waves, such as 
TIDs, as a regular wave and eliminate it as if it is a trend. The low sampling rate data may miss 
the high frequency TID signatures. To avoid this weakness, this paper investigated another 
approach to eliminate the trend of rsTEC by adopting an interpolation approach. 

Kotulak et al. (2017) compared three types of interpolation methods for computing regional 
ionospheric maps based on scattered vertical TEC (vTEC) measurements. The authors utilized 
these five interpolation methods – inverse distance weighting (IDW), polynomial interpolation, 
and three Voronoi diagram methods that includes natural neighbor interpolation, Non-Sibsonian 
interpolation, and Quasi-natural interpolation. For a cross-validation of the interpolated value, 
the leave-one-out technique (Cawley 2006) was applied. In this study, we adopted the natural 
neighborhood interpolation as a detrending strategy for computing the residual rsTEC. 

The natural neighbor algorithm was first introduced by Sibson (1981) to interpolate the 
value of a query point as the weighted sum of its natural neighbors formed based on the Voronoi 
diagrams. In three-dimensional space, R3, the natural neighbor interpolation can be equated as 
follows (Parsania & Virparia 2016): 
 

𝑓𝑓(𝑞𝑞) = ∑𝑤𝑤𝑖𝑖(𝑞𝑞) 𝑓𝑓(𝑝𝑝𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
 (5) 

 
where 𝑓𝑓(𝑞𝑞) is the interpolated value at the query point q∈R3, N is the number of neighboring 

points, 𝑓𝑓(𝑝𝑝𝑖𝑖) is the value of i-th natural neighbor 𝑝𝑝𝑖𝑖∈R3, and 𝑤𝑤𝑖𝑖(𝑞𝑞)∈[0,1] are the weight 
coefficients. The weight coefficients are dependent on the volume of the created Voronoi cells 
based on the considered set of data points. Inserting a new point into an existing Voronoi 
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where f (q) is the interpolated value at the query point q∈R3, 

N is the number of neighboring points, f (pi) is the value of 

i-th natural neighbor pi∈R3, and wi (q)∈[0,1] are the weight 

coefficients. The weight coefficients are dependent on the 

volume of the created Voronoi cells based on the considered 

set of data points. Inserting a new point into an existing 

Voronoi diagram, a new cell will be created which includes 

the overlapping segments of the initial cells. The proportion 

of the overlapping volume between the new and the initial 

cells to the volume of the new cell defines the weight 

coefficient as (Parsania & Virparia 2016):
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where 𝑉𝑉𝑝𝑝𝑖𝑖  denotes the Voronoi cell corresponding to i-th natural neighbor point before inserting 
the query point into the diagram, and 𝑉𝑉𝑞𝑞+ is the Voronoi cell related to the query point q. 𝑉𝑉𝑝𝑝𝑖𝑖 ∩ 𝑉𝑉𝑞𝑞+ 
indicates the overlapping segment between 𝑉𝑉𝑝𝑝𝑖𝑖 and 𝑉𝑉𝑞𝑞+. 

In this study, we adopted this method to detect TIDs that may be a small amplitude 
fluctuation on the STEC measurement of the continuous data span between one satellite and one 
receiver on the ground. The interpolation is utilized to predict the TEC value at a certain time by 
using the TEC values at neighboring data points. The number of neighboring data points differs 
based on the sampling rate of data and the background ionospheric condition. For the 
experiments, we experimentally determined the data points. By excluding one point at a time and 
interpolating the expected TEC value for the time, the trend can be determined. The residual 
TEC is derived by subtracting the trend from the TEC measurements. In a quiet ionospheric 
condition, less fluctuations on TECs are observed. If i-th observation is taken out from the vector 
of observations, the remained data is still capable of estimating a reliable value for the missing 
observation via the natural neighbor interpolation. Conversely, the estimated value deviates from 
its corresponding observation if an aberrant change appears in one or some of the natural 
neighbors. This deviation deteriorates when unaffected natural neighbors are applied to create 
the interpolant for estimation of a disturbed observation. Although the deviation of estimated 
TEC from its true value is not a desirable condition in detrending procedure, it can provide the 
apt measure to isolate the potential TIDs by defining the residual TEC as the difference between 
the true TEC and its estimated trend. It should be noted that two different methods in Figs. 1 and 
2 detected same peaks considerably TIDs that shows the proposed method successfully retrieved 
the TID detectable from a confirmed method. In addition, the residual TEC values in Figs. 1 and 
2 involve many small fluctuations coming from measurement noise and other effects that may 
increase the uncertainty to confirm as TIDs. Therefore, we applied the Butterworth band pass 
filter to mitigate these effects. 
 
2.3 TID Detection and Analysis 
 

As Fig. 2 presents, the detrending process properly eliminates the trend and the majority of 
remaining TEC residuals is random noise of the GNSS observations. We consider the peaks 
greater than 3σ of the TEC residual data span as the potential TID wave packet. The properties of 
these potential TIDs are examined in terms of the time of arrival and the 3D coordinates of the 
waves on the ionospheric thin shell of 350 km altitude above the ground. When the properties of 
peaks are the medium scale TIDs for the event, we identify them as the TID for the source event. 
In case of Fig. 2, a TID appeared about 7.5 minutes after the event that can be identified based on 
the known event time and the time of the peak appeared. 

Detected TIDs are further analyzed by observing the morphology of wave packet, their 
duration and the propagation velocity. The morphology is determined based on the coherent 
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where Vpi denotes the Voronoi cell corresponding to i-th 

natural neighbor point before inserting the query point into 

the diagram, and Vq
+ is the Voronoi cell related to the query 

point q.Vpi )∩Vq
+  indicates the overlapping segment between 

Vpi and Vq
+.

In this study, we adopted this method to detect TIDs 

that may be a small amplitude fluctuation on the STEC 

measurement of the continuous data span between one 

satellite and one receiver on the ground. The interpolation 

is utilized to predict the TEC value at a certain time by using 

the TEC values at neighboring data points. The number of 

neighboring data points differs based on the sampling rate 

of data and the background ionospheric condition. For 

the experiments, we experimentally determined the data 

points. By excluding one point at a time and interpolating 

the expected TEC value for the time, the trend can be 

determined. The residual TEC is derived by subtracting the 

trend from the TEC measurements. In a quiet ionospheric 

condition, less fluctuations on TECs are observed. If i-th 

observation is taken out from the vector of observations, 

the remained data is still capable of estimating a reliable 

value for the missing observation via the natural neighbor 

interpolation. Conversely, the estimated value deviates from 

its corresponding observation if an aberrant change appears 

in one or some of the natural neighbors. This deviation 

Fig. 1. The measured rsSTECs from dual-frequency GNSS carrier phase 
observables (a), and its third order numerical derivative (b). The rsTECs 
range between [0.36,7.13] TECU and their numerical derivatives vary 
between [-0.09,0.08] TECU. Supposing the time of event as the source (solid 
green line), the traveling time is considered as the time before and after the 
event specifying by negative and positive spots, respectively. According to 
the numerical derivative signatures, a TID was revealed about 7.5 minutes 
after the event.
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deteriorates when unaffected natural neighbors are applied 

to create the interpolant for estimation of a disturbed 

observation. Although the deviation of estimated TEC from 

its true value is not a desirable condition in detrending 

procedure, it can provide the apt measure to isolate the 

potential TIDs by defining the residual TEC as the difference 

between the true TEC and its estimated trend. It should be 

noted that two different methods in Figs. 1 and 2 detected 

same peaks considerably TIDs that shows the proposed 

method successfully retrieved the TID detectable from a 

confirmed method. In addition, the residual TEC values in 

Figs. 1 and 2 involve many small fluctuations coming from 

measurement noise and other effects that may increase the 

uncertainty to confirm as TIDs. Therefore, we applied the 

Butterworth band pass filter to mitigate these effects.

2.3 TID Detection and Analysis

As Fig. 2 presents, the detrending process properly 

eliminates the trend and the majority of remaining TEC 

residuals is random noise of the GNSS observations. We 

consider the peaks greater than 3σ of the TEC residual data 

span as the potential TID wave packet. The properties of 

these potential TIDs are examined in terms of the time 

of arrival and the 3D coordinates of the waves on the 

ionospheric thin shell of 350 km altitude above the ground. 

When the properties of peaks are the medium scale TIDs for 

the event, we identify them as the TID for the source event. 

In case of Fig. 2, a TID appeared about 7.5 minutes after the 

event that can be identified based on the known event time 

and the time of the peak appeared.

Detected TIDs are further analyzed by observing 

the morphology of wave packet, their duration and the 

propagation velocity. The morphology is determined 

based on the coherent analysis for a pair of TID waves. The 

correlation coefficient between two TID waves represents 

the level of similarity between the TID waves that can be 

utilized for discriminating the TID waves from different 

source events. The other properties, the duration and the 

propagation velocity of TIDs also indicate the type of the 

trigger events.

3. GEoPHYSIcAL EVEntS on 23 
JAnuArY 2018

On 23 January 2018, i.e., the day of year (DOY) 23 in 2018, a 

volcanic eruption and several earthquakes with magnitudes 

of 5.3-7.9 Mw occurred on the ring of fire. To ensure the 

ionospheric disturbances coming from a certain external 

source rather than a global scale event, we explored the 

background ionospheric condition. On 23 January, the k_P 

index ranged between 0 and 2 which inferred the probable 

ionospheric disturbances on DOY 23 predominately 

originated from any sources other than the geomagnetic 

activities. In addition to the level of geomagnetic activities, 

the level of solar activities was examined. The NOAA weekly 

report of SWPC PRF 2213 specified the level of solar activity 

during 22-28 January in very low degrees, where the solar 

radiation storms in NOAA Space Weather Scales was S1 

which is “minor”, demonstrating that the ionospheric 

variations on DOY 23 could not be excited due to any solar 

activities.

Verifying the quiet ionospheric conditions on 23 

January 2018, the 7.9 Mw Gulf of Alaska earthquake and 

Kusatsu-Shirane volcanic eruption were chosen among the 

geophysical hazards on this day not only to monitor their 

impacts on the ionosphere, but also to distinguish between 

the induced signatures with respect to the type of hazard. 

Fig. 3 shows the epicenter of the Gulf of Alaska earthquake 

and Kusatsu-Shirane volcanic eruption, as well as the other 

geophysical events on DOY 23 associating with the ring of 

fire.

3.1 Kusatsu-Shirane Volcanic Eruption

The Mount Kusatsu-Shirane is an active stratovolcano in 

Japan and consists of a series of pyroclastic cones and three 

crater lakes. The summit of this mount is located on 36.618°N 

in latitude, 138.528°E in longitude, and 2165 m in elevation. 

On 23 January 2018, the Japan Meteorological Agency (JMA) 

reported an unexpected eruptive activity for Mount Kusatsu-

Fig. 2. The estimated dominant trend of rsTEC signal used in Fig. 1 
by applying cross-validated natural neighbor interpolation (a), and its 
detrended signature (b). The trend varies between [0.36,7.12] TECU and its 
residuals range between [-0.03,0.03] TECU.
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Shirane, beginning at 01:59 UTC, and issued an alert level of 

3 on a scale of 1-5 to prohibit the residents from approaching 

the volcano. The eruption was coincident with the onset 

of volcanic tremors, an avalanche, ejection of tephra, and 

numerous volcanic earthquakes.

The Mount Kusatsu-Shirane is located nearby to four 

permanent sites from International GNSS Service (IGS) 

network within the distance of 150 – 900 km from the volcano 

summit, which are shown by yellow diamonds in Fig. 3b. As 

described in Section 2, the dual-frequency carrier phases 

were converted to relative STEC in Eq (3) for each IGS site. 

The dominant trend of the rsTEC was estimated based on the 

combination of the natural neighbor interpolation and the 

leave-one-out cross validation technique.

After the dominant trend of rsTEC estimated, the residual 

rsTEC were derived by subtracting the trend from the rsSTEC 

using a proposed method in the previous section. It should be 

noted that we applied one-hour of window for determining 

the interpolating point. Fig. 4 shows three examples of rsTEC 

(top), the residual rsTEC (middle), and the filtered residual 

Fig. 3. (a) Geophysical hazards on DOY023 in 2018 including earthquakes (circles) and volcanic 
eruptions (triangles) on the ring of fire (shaded red boundary); (b) Kusatsu-Shirane volcanic 
eruption; (c) 7.9 Mw Gulf of Alaska earthquake.

Fig. 4. The observed rsTEC (top), residual rsTEC derived by the detrending method of cross-validated natural neighbor interpolation (middle), and smoothed 
residual rsTEC filtered by Butterworth bandpass filter; the black dashed line in all plots indicates the time of the Kusatsu-Shirane eruption.

Fig. 5. Locations of the volcanic eruption (red star), GNSS ground stations 
(blue triangles), and TIDs at a 350 km altitude thin shell (pink circles).
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rsTEC (bottom). Since the short-term ionospheric signatures 

of the volcanic eruption were of the major interest, the 

signals are presented within a 70 minutes time window, from 

10 minutes before to 60 minutes after the eruption. For the 

residual rsTEC signals, the natural neighbor interpolation 

successfully estimated the dominant trend of TEC with 

standard deviation of 0.075 and an average of -0.001 TECU. 

The investigation in the residual rsTEC signals revealed the 

excitation of TIDs by the eruptive activity of Mount Kusatsu-

Shirane during a period of 7.5 – 32.5 minutes after the 

eruption which were considered as the immediate response 

of the ionosphere to the explosion.

Fig. 5 depicts the locations of the volcanic eruption, the 

TID locations based on the ionospheric pierce points (IPP) 

and the ground stations.

To estimate the propagation velocity of the detected TIDs, 

their 3D location should be determined based on the IPP on 

a single layer model (SLM) (Hofmann-Wellenhof et al. 2008). 

The detailed mathematical description for TID locations 

can be found at Park et al. (2011). The 3D coordinates of IPP 

are employed in computation of the slant distance to the 

source of disturbances, and eventually, calculation of the 

propagation velocity. Based on the multiple IPP locations 

and the time of arrival of TIDs, the experiments revealed 

that Kusatsu-Shirane eruption excited TIDs with an average 

velocity of 530 m s-1. TID-looking waveforms may or may 

not be induced by the source event as they could come 

from other sources. To confirm the similarity among the 

detected waveforms, we tested the coherency by computing 

the correlation coefficient between two waveforms. The 

correlation coefficient of 0.8 between the detected TIDs 

supported the correspondence between the ionospheric 

anomalies and the volcanic eruption.

3.2 Gulf of Alaska Earthquake

On 23 January 2018 at 09:31 UTC, an immense earthquake 

with magnitude of 7.9 Mw rocked Alaskan with an epicenter 

about 280 km away from the southeast of Kodiak Island 

and 560 km away from the southwest of Anchorage. The 

hypocenter of the earthquake was located in Gulf of Alaska 

on 56.046°N in latitude, 149.073°W in longitude, and 14 km 

in depth. The earthquake was due to a strike-slip faulting in 

which the quake is parallel to the compressional force and its 

energy is released by the rock displacement in a horizontal 

direction. Since the strike-slip faulting does not generate any 

notable uplift or subsidence, the Gulf of Alaska earthquake 

did not significantly change the water-level in Pacific Ocean, 

and consequently, only a small tsunami was observed several 

hours after the earthquake with less than 30 cm depths.

To investigate the ionospheric disturbance triggered by 

the Gulf of Alaska earthquake, the rsTEC were derived from 

the GNSS measurements at four Continuously Operating 

Reference Stations (CORS) within the radius of 1000 km from 

the epicenter. The distribution of the CORS relative to the 

epicenter of Gulf of Alaska earthquake is shown by yellow 

diamonds in Fig. 3c. The rsTEC signals were detrended by 

the natural neighbor interpolation and the leave-one-out. 

As stated in the previous section for the volcanic event case 

study, we applied one-hour of window for determining the 

interpolating point. The signal trends were estimated with a 

standard deviation of 0.087 and an average of -0.003 TECU. 

Fig. 6 presents the detrended rsTECs for different pairs of 

satellite-CORS. The average amplitude of the perturbations 

on the residual rsTEC was about 0.3 TECU which is 

comparable with the reported amplitude by Astafyeva et al. 

(2013) for shallow earthquakes with magnitude higher than 

Fig. 6. The observed rsTEC (top), residual rsTEC derived by the detrending method of cross-validated natural neighbor interpolation (middle), and smoothed 
residual STEC filtered by Butterworth bandpassed filter; the black dashed line in all plots indicates the time of the Gulf of Alaska earthquake.
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7. In Fig. 6, a few additional peaks beside the most dominant 

peak appeared with a smaller intensity. These disturbances 

can be contributed by aftershocks of this earthquake. 

According to USGS Earthquake Hazards Program, 95 

aftershocks with magnitude greater than 4.0 occurred in the 

first 48 hours after the primary shock of Alaskan earthquake. 

The first aftershock occurred at 09:47 UTC, about 16 minutes 

after the primary shock, with magnitude of 5.0 Mw which 

could originate the smaller TEC perturbations.

Fig. 7 depicts the locations of the volcanic eruption, the 

TID locations based on the ionospheric pierce points (IPP) 

and the ground stations.

The propagation velocity of TID also was computed using 

the IPP on the SLM and the average velocity was about 724 

m/s. To compare the property of the detected TIDs with other 

case studies, we examined the duration of the TID waves. 

We defined the wave packet when the rsTEC residual peaks 

are greater than 3σ for the 1 hour window of continuous 

data span. This test was applied before applying the band 

pass filter which may blend the TID wave and random 

noise. Based on this approach, the computed duration of 

the wave packet was about 3 minutes that is slightly shorter 

than the duration of 4-8 minutes for shallow earthquakes 

with magnitude between 7.2 –7.8 reported by Astafyeva 

et al. (2013). However, the mechanism of horizontal rock 

displacement in strike-slip faulting can explain the lower 

duration of triggered TIDs by Gulf of Alaska earthquake. 

Krabbenhoeft et al. (2018) reported that the Gulf of 

Alaska earthquake initially propagated from the epicenter 

to the north, and then its direction changed to the eastward. 

Spotting the detected TIDs on the ionospheric thin shell 

at altitude of 400 km, a meaningful relation between the 

rupture propagation and TID propagation can be identified. 

The distribution of the detected TIDs indicates two different 

propagation directions, directed in north and northeast of the 

epicenter which is consistent with the rupture propagation. 

This consistency not only validates the correctness of 

detected TIDs, but also confirms the impact of seismic waves 

propagation on the location of TIDs.

4. dIScrIMInAtIon oF tId InducEd BY 
tWo EVEntS

TID waveforms can be analyzed to discriminate the 

response of ionosphere between the volcanic eruption and 

earthquake events. We applied the 3-minute of time window 

to define the TID signatures as the duration of earthquake-

triggered TID waves was revealed as 3 minutes in the 

experiment. The correlation coefficients were calculated for 

sets of residual rsTEC waveforms before and after bandpass 

filtering.

For the case of the Kusatsu-Shirane volcanic eruption, we 

computed the correlation coefficient (CC) between the TID 

signatures and the average of the CC was 0.797. To exclude 

the noise and other effects, we applied a bandpass filter and 

the CC was even increased to be 0.824. In the case of the 

Gulf of Alaska earthquake, the detected TID signatures had a 

correlation of 0.705 and 0.635 for the waveforms before and 

after the bandpass filter.

To obtain a better insight on the differences between 

the volcanic eruption and earthquake TIDs, the same 

coherence analysis across two events was performed. The 

earthquake TIDs were correlated to the eruption TIDs with 

a coefficient of 0.378 and 0.302 for the noisy and denoised 

residual rsTEC waveforms, respectively. The result indicates 

that the waveforms of TIDs from a single natural hazard, 

such as earthquake or volcanic explosion, involve similar 

characteristics among them showing high correlation up to 

0.8. In contrast, characteristics across different types of events 

are distinctive where the highest correlation coefficient was 

only 0.4.

While both approaches result the stronger correlation 

between the TIDs from one event and the lower correlation 

between the TIDs generated across two events. It is seen that 

the natural neighbor method showed the higher correlation 

between TIDs from one event. Although the denoising 

process using a band-pass filter is useful for isolating the TID 

waveform, the coherent analysis result shows it possibly loses 

the characteristic as the denoised signals in both methods 

lead increased correlation between two events.

In addition, we also investigated the frequency of the 

representative TID waves induced by the earthquake (top) 

Fig. 7. Locations of the earthquake (red star), GNSS ground stations (blue 
triangles), and TIDs at a 350 km altitude thin shell (pink circles).



Anahita Shahbazi & Jihye Park   Ionospheric Responses to An Earthquake and A Volcanic Eruption  313

http://www.ipnt.or.kr

and the volcanic eruption (bottom) as shown in Fig. 8. 

The left panel presents the TID waves after filtering. The 

right panel shows the spectral of representative TIDs. The 

frequency of earthquake-driven TID is ranging from 2 mHz to 

8 mHz where the frequency of the volcanic eruption-driven 

TID is ranging from 4 mHz to 9 mHz.

5. SuMMArY And dIScuSSIon

This study explored the ionospheric impacts from the 

Gulf of Alaska earthquake and Kusatsu-Shirane volcanic 

eruption by analyzing the triggered TIDs from both events. 

As the events occurred on the same day, the background 

ionospheric behavior in global scale was comparable for 

both events which makes the comparison of different types 

of events valid. The GNSS-derived TEC was processed to 

detect the TID signatures in the ionosphere for two events. 

The TIDs were isolated by cross-validating the natural 

neighbor interpolation and the leave-one-out technique for 

estimation of STEC trends. The detrended STECs, i.e. the 

residual rsTEC, were post-processed by applying a bandpass 

filter for mitigating observational noise. Investigating 

the denoised residual rsTEC, the short-term ionospheric 

perturbations after the hazards were isolated. The verification 

of the proposed detrending method in isolation of TIDs was 

made based on the numerical derivatives of rsSTEC. The 

experiments revealed that the TIDs propagated through the 

ionosphere with an average velocity of 529.894 m/s after 

the Kusatsu-Shirane volcanic eruption, while the averaged 

velocity of TIDs was estimated 723.655 m/s after Gulf of 

Alaska earthquake. A coherence analysis showed that the TID 

waveforms of the volcanic eruption were highly correlated up 

to 82.4%. The correlation of TID waveforms of the earthquake 

was also high with a coefficient of 0.705. However, there 

was not an extreme correlation between the TID waveforms 

of earthquake and explosion which was about 37.8% of 

similarity. This low correlation between the TIDs of different 

sources may have caused by disparate mechanism of TID 

generation which affects the spectral characteristics of the 

waveforms. This discrimination can be further improved by 

investigation of the mechanism wave propagation through 

the ionosphere after each type of geophysical event.
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