Acknowledgement
본 논문은 한국건설기술연구원 주요사업으로 지원을 받아 수행된 연구(인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발)로 이에 감사합니다.
References
- Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, pp. 801-818.
- Chu, H., Wang, W., Deng, L. (2022), "Tiny-Crack-Net: a multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks", Computer-Aided Civil and Infrastructure Engineering, Vol. 37, No. 14, pp. 1914-1931. https://doi.org/10.1111/mice.12881
- Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., Ebersbach, D., Stoeckert, U., Gross, H.M. (2017), "How to get pavement distress detection ready for deep learning? a systematic approach", Proceedings of the 2017 International Joint Conference on Neural Networks, Anchorage, pp. 2039-2047.
- Hadinata, P.N., Simanta, D., Eddy, L., Nagai, K. (2021), "Crack detection on concrete surfaces using deep encoder-decoder convolutional neural network: a comparison study between U-Net and DeepLabV3+", Journal of the Civil Engineering Forum, Vol. 7, No. 3, pp. 323-334. https://doi.org/10.22146/jcef.65288
- Ham, S., Bae, S., Kim, H., Lee, I., Lee, G.P., Kim, D. (2021), "Training a semantic segmentation model for cracks in the concrete lining of tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 6, pp. 549-558. https://doi.org/10.9711/KTAJ.2021.23.6.549
- Han, C., Ma, T., Huyan, J., Huang, X., Zhang, Y. (2021), "CrackW-Net: a novel pavement crack image segmentation convolutional neural network", IEEE Transactions on Intelligent Transportation Systems, pp. 1-10.
- Han, X., Zhao, Z., Chen, L., Hu, X., Tian, Y., Zhai, C., Wang, L., Huang, X. (2022), "Structural damagecausing concrete cracking detection based on a deep-learning method", Construction and Building Material, Vol. 337, No. 27, 127562.
- Hsieh, Y.A., Tsai, Y.J. (2020), "Machine learning for crack detection: review and model performance comparison", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020038.
- Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.W., Wu, J. (2020), "UNet3+: a full-scale connected UNet for medical image segmentation", Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, pp. 1055-1059.
- Ji, A., Xue, X., Wang, Y., Luo, X., Xue, W. (2020), "An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement", Automation in Construction, Vol. 114, 103176.
- Johnson, J.M., Khoshgoftaar, T.M. (2019), "Survey on deep learning with class imbalance", Journal of Big Data, Vol. 6, No. 1, pp. 1-54. https://doi.org/10.1186/s40537-018-0162-3
- Kaiser, P., Wegner, J.D., Lucchi, A., Jaggi, M., Hofmann, T., Schindler, K. (2017), "Learning aerial image segmentation from online maps", IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 11, pp. 6054-6068. https://doi.org/10.1109/TGRS.2017.2719738
- Kim, A.R., Kim, D.H., Byun, Y.S., Lee, S.W. (2018), "Crack detection of concrete structure using deep learning and image processing method in geotechnical engineering", Journal of the Korean Geotechnical Society, Vol. 34, No. 12, pp. 145-154. https://doi.org/10.7843/KGS.2018.34.12.145
- Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K. (2019), "Augmentation for small object detection", arXiv:1902.07296.
- Li, D., Duan, Z., Hu, X., Zhang, D. (2021), "Pixel-level recognition of pavement distresses based on U-Net", Advances in Materials Science and Engineering, Vol. 2021, 5586615.
- Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Venice, pp. 2980-2988.
- Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P. (2016), "Convolutional neural networks for large-scale remote-sensing image classification", IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 2, pp. 645-657. https://doi.org/10.1109/TGRS.2016.2612821
- Middha, L., Crack segmentation dataset, https://www.kaggle.com/lakshaymiddha/crack-segmentation-dataset (September 20, 2022).
- Rolnick, D., Veit, A., Belongie, S., Shavit, N. (2017), "Deep learning is robust to massive label noise", arXiv:1705.10694.
- Ronneberger, O., Fischer, P., Brox, T. (2015), "U-net: convolutional networks for biomedical image segmentation", Proceedings of the International Conference on Medical Image Computing and ComputerAssisted Intervention, Munich, pp. 234-241.
- Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z. (2016), "Automatic road crack detection using random structured forests", IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 12, pp. 3434-3445. https://doi.org/10.1109/TITS.2016.2552248
- Shim, S., Choi, S.I., Kong, S.M., Lee, S.W. (2021), "Deep learning algorithm of concrete spalling detection using focal loss and data augmentation", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 4, pp. 253-263. https://doi.org/10.9711/KTAJ.2021.23.4.253
- Wang, Z., Xu, G., Ding, Y., Wu, B., Lu, G. (2020), "A vision-based active learning convolutional neural network model for concrete surface crack detection", Advances in Structural Engineering, Vol. 23, No. 13, pp. 2952-2964. https://doi.org/10.1177/1369433220924792
- Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S. (2012), "Cracktree: automatic crack detection from pavement images", Pattern Recognition Letters, Vol. 33, No. 3, pp. 227-238. https://doi.org/10.1016/j.patrec.2011.11.004
- Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S. (2018), "Deepcrack: learning hierarchical convolutional features for crack detection", IEEE Transactions on Image Processing, Vol. 28, No. 3, pp. 1498-1512. https://doi.org/10.1109/tip.2018.2878966