DOI QR코드

DOI QR Code

정량적 위험도 평가를 통한 열차 승강장 화재시 최적 제연모드 선정에 관한 연구

A study on the selection of the optimal smoke control mode in train platform through quantitative risk assessment

  • 투고 : 2022.11.11
  • 심사 : 2022.11.24
  • 발행 : 2022.11.30

초록

열차 정거장의 경우 연기배출이 제한된 지하공간이라는 특수성으로 인해 적절한 제연 설비가 갖추어지지 않는다면 화재 발생시 화재연기로 인한 피해가 확대될 우려가 있다. 이에 지하 정거장의 대피 안전성을 확보하기 위한 대책의 필요성이 부각되었으며, 화재시 승강장 이용객의 안전한 대피를 위한 연구가 국내외에서 지속적으로 수행되고 있다. 하지만 현재 열차 승강장에는 제연 경계벽과 PSD (Platform Screen Door)등에 의해 제연구역을 구획하여 제연설비를 설치하고 있으나, 화재시 제연구역별 제연방법(급기 또는 배기) 즉, 제연모드에 관한 기준은 제시되어 있지 않은 실정이다. 본 연구에서는 열차 정거장 화재시 제연모드에 따른 화재위험을 정량적으로 평가하기 위해서 화재해석 및 대피해석을 수행하여 사망자수를 추정하고 F/N선도를 도출하였으며, 이를 통해 최적 제연모드를 검토한 결과, 화재 구역 배기 및 인접구역 급기인 경우에 총 위험도가 가장 낮은 것으로 분석됐다.

In the case of train stations, due to the specificity of underground spaces with limited smoke emissions, if appropriate removal equipment is not equipped, the damage caused by fire smoke may increase in the event of a fire. As a result, the need for measures to ensure the safety of evacuation of underground stations has been highlighted, and research for safe evacuation of platform users in case of fire is continuously being conducted at home and abroad. However, although the smoke removal area is currently divided by smoke boundary walls and platform screen doors (PSD) and installed in the train platform, standards for smoke removal methods (air supply or exhaust) for each fire removal area, that is, smoke removal mode, are not presented. In this study, fire analysis and evacuation analysis were performed to estimate the number of deaths and to derive F/N guidance in order to quantitatively evaluate the fire risk according to the fire station fire, and the total risk was the lowest in the case of fire area exhaust and supply to adjacent areas.

키워드

과제정보

본 연구는 과학기술정보통신부 2019년 선도연구센터사업의 스마트 수중 터널 시스템 연구센터(2017R1A5A1014883)의 지원으로 수행되었습니다. 연구지원에 감사드립니다.

참고문헌

  1. Bartlett, N. (2012), Optimization of smoke control systems in underground subway stations, Master thesis submitted in the Erasmus Mundus Study Programme, Ghent University, pp. 60-62.
  2. Both, K., Haack, A. (2004), "Present-day design fire scenarios and comparison with test results and real fires: structures & equipment", Proceedings of the First International Symposium, Safe & Reliable Tunnels, Innovative European Achievements, Praque, Czech Republic, p. 73-86.
  3. BSI (2003), Application of fire safety engineering principles to the design of buildings - Part 7: Probabilistic risk assessment, PD 7974-7.
  4. Kim, H.G., Yoo, J.O., Kim, D.Y. (2018), "A study on the optimal ventilation and smoke exhaust systems in case of fire in subway stations installed with PSD", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 2, pp. 527-539. https://doi.org/10.9711/KTAJ.2018.20.2.527
  5. KTA (2015), Metropolitan high-speed rai (Suseo-Pyeongtaek) roadbed construction design - Research report for quantitative risk assessment criteria, Korea Rail Network Authority, Dejeon, Korea.
  6. McKeen, P. (2016), Computational modeling of fire safety in metro-stations, Bachelor of Architectural Science, Ryerson University, Toronto, Ontario, Canada, pp. 10-12.
  7. Molag, M., van Mierlo, R., Wiersma, T. (2001), "Realistic fire scenarios for safety assessments of train fires in tunnels", Proceedings of the 4th International Conference on Safety in Road and Rail Tunnels, Madrid, Spain, pp. 171-180.
  8. NFA (2017), Performance-oriented design methods and standards for fire fighting facilities, etc, National Fire Agency.
  9. Railway Safety Research Group (2011), Guideline for fire safety evaluation of railway tunnel, pp. 4-21.
  10. Rie, D., Ryu, J. (2020), "Sustainable urban planning technique of fire disaster prevention for subway", Sustainability, Vol. 12, No. 1, p. 372.
  11. Rie, D.H. (2003), "A study on safety evaluation by changing smoke ventilation mode in subway tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 5, No. 4, pp. 389-400.