DOI QR코드

DOI QR Code

A study on the effect of blasting vibration and the optimal blasting offset according to the depth of tunnel

터널 심도에 따른 발파 진동 영향 및 최적 발파 이격거리 연구

  • Kong, Suk-Min (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Sang-Il (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Yeong-Bae (Mirae E&C) ;
  • Noh, Won-Seok (Mirae E&C) ;
  • Kim, Chang-Yong (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Seong-Won (Dept. of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 공석민 (한국건설기술연구원 지반연구본부) ;
  • 최상일 (한국건설기술연구원 지반연구본부) ;
  • 김영배 (미래이엔씨(주)) ;
  • 노원석 (미래이엔씨(주)) ;
  • 김창용 (한국건설기술연구원 지반연구본부) ;
  • 이성원 (한국건설기술연구원 지반연구본부)
  • Received : 2022.09.16
  • Accepted : 2022.10.27
  • Published : 2022.11.30

Abstract

Owing to the saturation of ground spaces in downtown areas, underground spaces are being developed increasingly. Underground spaces are utilized for transportation, water supply and sewerage, communication zones, electric power zones, and various cultural complexes. In Korea, for excavating underground spaces, blasting methods using gunpowder such as the New Austrian Tunneling Method (NATM) are mainly used. However, the blasting method causes vibration and noise during tunnel excavation, generating many complaints from residents in the vicinity of the excavation site. To address this problem, various methods have been developed, and recently, vibration and noise have been reduced using deep excavation. This study predicts blast vibration changes according to the depth, under the same blasting and tunnel conditions, using numerical analysis based on the blast vibration measurement data of the GTX-A route, the tunnel cross-section drawings, and ground investigation reports. Furthermore, the necessary separation distance from densely populated areas such as residential areas is suggested by analyzing the trend of decreasing blast vibration according to the distance from ground surface directly above the blasting location.

도심지 지상공간의 포화로 인한 지하공간 개발은 지속적으로 증가하고 있으며, 지하공간은 교통, 상하수도, 통신구, 전력구 및 각종 복합 문화 공간으로 활용되고 있다. 지하공간을 굴착하는 대표적인 방법으로 국내에서는 NATM (New Austrian Tunneling Method)과 같은 화약을 이용한 발파 공법이 주로 사용되어왔다. 하지만, 발파 공법은 터널 굴착 시 진동과 소음을 유발하기 때문에 굴착 인근 지역 주민들의 민원이 많이 발생한다. 최근 도심지 대심도 지하공간 굴착공사가 증가하고 있어 발파 진동과 소음 저감을 위한 근본적인 노력과 기술이 필요로 되고 있는 상황이다. 본 연구에서는 GTX-A 노선 일부구간의 현장 발파 진동 계측자료 및 지반조사자료와 설계자료를 활용하여 동일 발파, 터널조건에서 심도에 따른 발파 진동 변화를 수치해석을 통해 예측하고자 한다. 또한 발파 위치 직상부로부터의 이격거리에 따라 발파 진동의 감소 경향을 분석하여 주택가와 같은 인구 밀집 지역으로부터 필요한 이격거리를 제시하고자 한다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 지원(과제명: 도심 지하 교통 인프라 건설 및 운영 기술 고도화 연구, 과제번호: 22UUTI-C157788-03)으로 수행되었습니다. 이에 감사드립니다.

References

  1. Ahn, J.K., Park, D.H., Shin, Y.W., Park, I.J. (2014), "Generation of blast load time series under tunneling", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 1, pp. 51-61. https://doi.org/10.9711/KTAJ.2014.16.1.051
  2. Choi, J.S., Lee, J.M., Jo, M.S. (2006), "A calculation of blasting load using input identification method & evaluation of structure's vibration in numerical analysis", Tunnel and Underground Space, Vol. 16, No. 3, pp. 232-240.
  3. Hino, K. (1959), Theory and Practice of Blasting, Nippon Kayaku Co., Ltd., Tokyo, Japan, pp. 1-11.
  4. Itasca Consulting Group Inc. (2017), "FLAC 3D 6.0 manual: examples (An excerpt from FLAC3D help)", Itasca Consulting Group Inc.:St. Paul, Minneapolis, United States, pp. 39-52.
  5. Jeon, S.S., Jang, Y.W., Jung, D.H. (2007a), "Estimation of the blasting distance satisfying allowable peak particle velocity - analytical & numerical analysis approach", Journal of the Korean Society of Hazard Mitigation, Vol. 7, No. 1, pp. 39-46.
  6. Jeon, S.S., Kim, D.S., Jang, Y.W. (2007b), "Stability assessment of concrete lining and rock bolts of the adjacent tunnel by blast-induced vibration", Journal of the Korean Geotechnical Society, Vol. 23, No. 10, pp. 33-45. https://doi.org/10.7843/KGS.2007.23.10.33
  7. Kim, Y.G. (2020), "Review on underground safety management in Korea", Magazine of Korean Tunnelling and Underground Space Association, Vol. 22, No. 1, pp. 4-19.
  8. Kong, S.M., Kim, A.R., Byun, Y.S., Shim, S.B., Choi, S.I., Lee, S.W. (2022), "Analysis of stability and required offset with vibration velocity considering conditions of bedrock and explosive charges using the TBM and NATM extension blasting method", Applied Sciences, Vol. 12, No. 7, pp. 3473-3490. https://doi.org/10.3390/app12073473
  9. MOLIT (2002), "Blasting noise review of vibration tolerance standards", Office of the Inspector General of the Ministry of Construction and Transportation, Korea, pp. 9-29.
  10. MOLIT (2016), Tunnel Standard Specification, Human Culture Arirang, Korea, pp. 1-11.
  11. Moon, H.N. (2010), A study on the vibration propagation characteristics of controlled blasting methods and explosives in tunnel, Master Thesis, Hanyang University, pp. 1-98.
  12. Oh, W.K. (2008), A study on the ground reinforcement for constructability of tubular roof construction method, Master's Thesis, Hanyang University, p. 45.
  13. Son, J.H., Kim, B.R., Lee, S.J., Kim, N.S., Lee, H., Choi, S.O. (2019), "A numerical study on the reduction effect of blasting vibration with cut method", Explosives and Blasting, Vol. 37, No. 1, pp. 1-13. https://doi.org/10.22704/KSEE.2019.37.1.001
  14. Starfield, A.M., Pugliese, J.M. (1968), "Compression waves generated in rock by cylindrical explosive charges: A comparison between a computer model and field measurements", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 5, No. 1, pp. 65-77. https://doi.org/10.1016/0148-9062(68)90023-5