DOI QR코드

DOI QR Code

(C10H8N2H)2Cr2O7를 이용한 알코올들의 산화반응과 반응속도에 관한 연구

A Study for Kinetics and Oxidation Reaction of Alcohols using (C10H8N2H)2Cr2O7

  • 박영조 (강원대학교 교양학부) ;
  • 김수종 (한라대학교 신소재화학공학과)
  • 투고 : 2022.10.31
  • 심사 : 2022.11.09
  • 발행 : 2022.11.30

초록

한 분자 내에 여러 가지 히드록시기가 존재 할 때, 특정 히드록시기만을 선택적으로 산화시키는 산화제는, 알코올을 포함한 유기화학 합성과정에서, 벤질알코올, 알릴알코올, 일차알코올, 이차알코올들이 있을 때, 특정 알코올만을 선택적으로 산화시키는 산화제로 사용할 수 있다. 우리는 (C10H8N2H)2Cr2O7을 합성하여, 적외선(FT-IR)과 원소분석 등으로 구조를 확인하였다. 유기용매들에서, (C10H8N2H)2Cr2O7을 이용하여 벤질알코올의 산화반응을 측정한 결과, 유기용매의 유전상수 값이 커짐에 따라 반응성이 증가했다. DMF, acetone 용매에서 (C10H8N2H)2Cr2O7을 이용하여알코올들의 산화반응을 측정한 결과, 벤질알코올, 알릴알코올, 일차알코올 및 이차알코올들을 알데히드나 케톤(65%~95%)으로 전환시키는 효율적인 산화제였다. DMF, acetone 용매에서 (C10H8N2H)2Cr2O7을 이용하여 알코올 혼합물들의 산화반응성을 측정한 결과, 이차알코올들이 있을 때, 벤질알코올, 알릴알코올, 일차알코올들을 선택적으로 산화(15%~95%) 시켰다. H2SO4 촉매를 첨가 후, DMF 용매에서, (C10H8N2H)2Cr2O7은 벤질알코올과 그의 유도체들을 효과적으로 산화시켰다. Hammett 반응상수(ρ) 값은 -0.69(308K) 이었다. 본 실험에서 알코올의 산화반응 과정은 속도결정단계에서 수소화 전이가 일어났다.

We synthesized (C10H8N2H)2Cr2O7, The structure of the product was characterized with FT-IR(infrared) and elemental analysis. The oxidation of benzyl alcohol by (C10H8N2H)2Cr2O7 in organic solvents showed that the reactivity increased with the increase of the dielectric constant. The oxidation of alcohols was examined by (C10H8N2H)2Cr2O7 in DMF, acetone. As a resuit, (C10H8N2H)2Cr2O7 was found as efficicent oxidizing agent that converted benzyl alcohol, allyl alcohol, primary alcohol and secondary alcohols to the corresponding aldehydes or ketones(65%~95%). The selective oxidation of alcohols was also examined by (C10H8N2H)2Cr2O7 in DMF, acetone. (C10H8N2H)2Cr2O7 was selective oxidizing agent(15%~95%) of benzyl alcohol, allyl alcohol and primary alcohol in the presence of secondary ones. In the presence of DMF solvent with acidic catalyst such as H2SO4. (C10H8N2H)2Cr2O7 oxidized benzyl alcohol(H) and its derivatives. The Hammett reaction constant(ρ) was -0.69(308K). The observed experimental data were used to rationalize the hydride ion transfer in the rate determining step.

키워드

참고문헌

  1. H. B. Davis and R. M. Sheets, "High Valent Chromium Heterocyclic Complexes-ll: New Selective and Mild Oxidants," Heterocycles, Vol. 22, pp. 2029-2035, 1984. DOI:https://dx.doi.org/10.3987/R-984-09-2029
  2. M. R. Pressprich and R, D. Willett, "Peparation and Crystal Structure of Dipyrazinium Trichromate and Bond Length Correlation for Chromate Anions of the Form CrnO3n+12,-" Inorg. Chem., Vol. 27, pp. 60-264, 1988. DOI:https://dx.doi.org/10.1021/jc00275a009
  3. C. S. Kim and K. S. Yoo. "Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation," Appl. Chem. Eng., Vol. 24, pp. 663-667, 2013. DOI: https://dx.doi.org/10.14478/ace.2013.1094
  4. T. J. Cho and K. S. Yoo, "Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation," Appl. Chem. Eng., Vol. 25, pp. 281-285, 2014. DOI: https://dx.doi.org/10.14478/ace.2014.1028
  5. Y. J. Choo and K. S. Yoo, "Synthesis of Pd-Ag on Charcoal Catalyst for Aerobic Benzyl Alcohol Oxidation Using[Hmim][PF6]," Appl. Chem. Eng., Vol. 25, pp. 425-429, 2014. DOI:https://dx.doi.org/10.14478/ace.2014.1063
  6. T. J. Cho, K and S. Yoo, "Preparation of Pd/TiO2 Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation," Appl. Chem. Eng., Vol. 26, pp. 351-355, 2015. DOI: https://dx.doi.org/10.14478/ace.2015.1044
  7. P. D. Lokhande and S. R. Waghmare, "Copper Catalyzed Selective Oxidation of Benzyl Alcohol to Benzaldehyde," Journal of the Korean Chemical Society, Vol. 56, pp. 539-541, 2012. DOI:http://dx.doi.org/10.5012/jkcs.2012.56.5.539
  8. Y. Y. Kim and, K. Y. Kwon, "Synthesis of Ru Incorporated TiO2 and Application to Oxidation of Benzyl Alcohol with Molecular Oxygen," Appl. Chem. Eng, Vol. 25, pp. 645-647, 2014. DOI: https://dx.doi.org/10.14478/ace.2014.1106
  9. K. W. Kim and S. M. Lee, "A Study on Characterization for Catalytic Oxidation of Nitrogen Monoxide Over Mn/TiO2 Catalyst," Appl. Chem., Eng, Vol. 25, pp. 474-480. 2014. DOI: https://dx.doi.org/10.14478/ace.2014.1061
  10. J. O. Jo and Y. S. Mok, "Oxidation of Isopropyl Alcohol in Air by a Catalytic Plasma Reactor System," Appl. Chem. Eng., Vol., pp. 531-537. 2014. DOI: http://dx.doi.org/10.14478/ace.2014.1082
  11. Y. H. Lee and K. Y. Kwon, "Synthesis and Oxidative Catalytic Property of Rutheniumdoped Titanate Nanosheets," Appl. Chem Eng., Vol. 28, pp. 593-596. 2017. DOI:https://doi.org/10.14478/ace.2017.1056
  12. R. Tayebee, "Simple Heteropoly Acids as Water Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide A Mechanistic Approach," J. Korean Chem. Soc., Vol. 52, 23-29. 2008. DOI: https://dx.doi.org/10.5012/jkcs.2008.52.1.023
  13. Y. S. Kim and H. Choi, "Kinetics and Mechanism of Nucleophilic Substittution Reaction of 4-Sub sitituted-2,6-dinitrochloro-benzene with Benzyla mines in MeOH-MeCN Mixtures," Bull. Korean Chem. Soc., Vol. 31, pp. 3279-3282. 2010. DOI: https://dx.doi.org/10.5012/jkcs.2008.52.1.023
  14. F. K. Behbahani and M. Farahani, "Iron(III) Phosphate as a Green and Reusable Catalyst Promoted Chemo Selective Acetylation of Alcohols and Phenols with Acetic Anhydride Under Solvent Free Conditions at RoomTemperature," Journal of the Korean Chemical Society, Vol. 55, pp. 633-637, 2011. DOI:10.5012/jkcs.2011.55.4.633