DOI QR코드

DOI QR Code

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • She, Gui-Lin (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Wu, Fei (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Yuan, Shu-Jin (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Bai, Ru-Qing (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Pu, Hua-Yan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Wang, Shilong (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Luo, Jun (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2021.10.22
  • Accepted : 2022.07.04
  • Published : 2022.11.25

Abstract

Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.

Keywords

References

  1. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022a), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  2. Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022b), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117.
  3. Akgoz, B. and Civalek, O. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004.
  4. Akgoz, B. and Civalek, O. (2014a), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752.
  5. Akgoz, B. and Civalek, O. (2014b), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011.
  6. Barretta, R. Ali Faghidian, S. and Marotti de Sciarra, F. (2019b), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.00.
  7. Barretta, R., Sciarra, F.M.D. and Vaccaro, M.S. (2019a), "On nonlocal mechanics of curved elastic beams", Int. J. Eng. Sci., 144, 103140. http://doi.org/10.1016/j.ijengsci.2019.103140.
  8. Bouhadra, A., Menasria, A. and Rachedi, M.A. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. http://doi.org/10.12989/anr.2021.10.4.313.
  9. Civalek, O., Uzun,B., Yayli, M.O., Akgoz, B. (2020), "Sizedependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  10. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063.
  11. Ebrahimi, F. and Barati, M. R. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229.
  12. Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.
  13. Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
  14. Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
  15. Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36, 143-161. http://doi.org/10.12989/scs.2020.36.2.143.
  16. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. http://doi.org/10.12989/scs.2018.27.1.109.
  17. Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A., Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. http://doi.org/10.12989/anr.2021.11.4.405.
  18. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  19. Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
  20. Khadir, A.I., Daikh, A.A. and Eltaher, M. A. (2021), "Novel fourunknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
  21. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  22. Liu, H. and Lv, Z. (2018), "Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams", Compos. Struct., 202(15), 615-624. https://doi.org/10.1016/j.compstruct.2018.03.024.
  23. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  24. Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S. and Wang, Y.S. (2018b), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061.
  25. Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2017), "Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models", Physica E, 86, 253-161. https://doi.org/10.1016/j.physe.2016.10.036.
  26. Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2018a), "Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory", Int. J. Struct. Stabil. Dyn., 18(4), 1850060. https://doi.org/10.1142/S0219455418500608.
  27. Malikan, M., Krasheninnikov, M., Eremeyev, V.A. (2020b), "Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field", Int. J. Eng. Sci., 148, 103210. http://doi.org/10.1016/j.ijengsci.2019.103210.
  28. Malikan, M., Uglov, N.S., Eremeyev, V.A. (2020a), "On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures", Int. J. Eng. Sci., 157, 103395. http://doi.org/10.1016/j.ijengsci.2020.103395.
  29. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  30. Numanoglu, H.M., Ersoy, H., Akgoz, B. and Civalek, O. (2022), "A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method", Math. Methods Appl. Sci., 45(5), 2592-2614. https://doi.org/10.1002/mma.7942.
  31. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  32. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. http://doi.org/10.12989/sem.2022.82.2.225.
  33. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  34. Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res.,10(1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025.
  35. Sun, D. and Luo, S.N., (2011), "The wave propagation and dynamic response of rectangular functionally graded material plates with completed clamped supports under impulse load", Eur. J. Mech. A Solid., 30(3), 396-408. https://doi.org/10.1016/j.euromechsol.2011.01.001.
  36. Wang, Y.Q. and Liang, C. (2019), "Wave propagation characteristics in nanoporous metal foam nanobeams", Results Phys., 12, 287-297. https://doi.org/10.1016/j.rinp.2018.11.080.
  37. Wang, Y.Q., Liang, C. and Zu, J.W. (2019), "Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flugge shell theory", Eur. Phys. J. Plus, 134(5), 233. https://doi.org/10.1140/epjp/i2019-12543-0.
  38. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  39. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L., (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://doi.org/10.12989/scs.2021.38.3.293.
  40. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. http://doi.org/10.12989/scs.2022.42.3.397.
  41. Zhou, W.J., Chen, W.Q., Muhammad, Lim, C.W. (2019), "Surface effect on the propagation of flexural waves in periodic nanobeam and the size-dependent topological properties", Compos. Struct., 216, 427-435. https://doi.org/10.1016/j.compstruct.2019.03.016.