DOI QR코드

DOI QR Code

Measures to improve the DEM using SAR images in the river corridor

합성개구레이더 영상을 이용한 하천내 DEM 개선 방안

  • Kim, Joo-Hun (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Noh, Hui-Seong (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 김주훈 (한국건설기술연구원 수자원하천연구본부) ;
  • 노희성 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2022.09.26
  • Accepted : 2022.10.13
  • Published : 2022.11.30

Abstract

The purpose of this research is to propose the measurement of improving DEM by using the water surface range of SAR image analysis for river corridors and to suggest the construction of satellite-based 3D river spatial information of inaccessible regions such as North Korea. For this research, it has been progressed from the accessible area, watershed of Namgang river, the branch of Nakdonggang river. The satellite image was collected from SAR satellite image data for a year in 2021 which was provided by ESA from Sentinel-1A/B data and extracted from the seasonal water surface area. Ground gauge water level was collected from hourly intervals data by WAMIS. The DEM was improved by analysis of the river altitude of water surface area change by the combination of the ground water level of minimum to maximum water surface area data extracted from SAR image analysis. After the improvement of DEM, the altitude of the river varied that it is defined to comprise more natural form of river DEM than the existing DEM. The correction validation of improvement DEM was necessary in field survey elevation data; however, the correction validation was not progressed due to the absence of the data. Although, the purpose of this research is to provide the improvement of DEM by using the analyzed water surface by existing DEM data and SAR image analysis. After the progression of additional correction validation research, we would plan to examine the application in other places and to progress the additional methodological research to apply in inaccessible and unmeasured area including the North Korea.

본 연구에서는 하천구역에 대해 SAR 영상 분석에 의한 수면적 범위를 이용한 DEM을 개선하는 방법을 제안하고, 북한과 같은 비접근 지역에 적용 가능한 위성 기반의 3차원 하천 공간정보 구축 방법을 제시함을 목적으로 하고 있다. 이를 위해 접근 가능한 남한의 낙동강 지류인 남강 유역을 대상으로 연구를 진행하였다. 위성영상은 유럽항공우주국에서 제공하고 있는 Sentinel-1A/B 자료에 대해 2021년 1년간의 SAR 위성영상 자료를 수집하여 각 시기별의 수체면적을 추출하였다. 지상관측 수위는 WAMIS의 1시간 간격의 자료를 수집하였다. SAR영상 분석에 의해 추출한 수체면의 최저면적부터 최고면적까지 자료에 대해 지상의 계측 수위를 조합하여 수체면 변화에 따른 하천내 고도를 분석하여 DEM을 개선하였다. DEM 개선 후 하천구역내 고도가 매우 다양한 값을 나타내고 있어 기존의 DEM보다 비교적 자연스러운 형태의 하천 DEM을 구성하고 있는 것으로 판단된다. 개선된 DEM에 대한 정확도 검증을 위해 현장에서 측정한 지형 고도자료가 필요하나 자료의 부재로 인해 정확도 검증은 수행하지 못하였다. 다만 본 연구에서는 기존의 DEM과 SAR 영상 분석에 의해 분석된 수체면의 수위를 이용하여 DEM을 개선하는 방법을 제시하였다. 향후 정확도 검증에 대한 추가 연구를 수행한 후 다른 지역에 대한 적용성 검토 및 북한과 같은 미계측/비접근 지역에 적용할 수 있는 방법론을 추가로 제시하는 연구를 진행할 계획이다.

Keywords

Acknowledgement

본 연구는 2022년 한국건설기술연구원 주요사업인 "AI 기반 경남지역 맞춤형 도로침수 실시간 예측, 감시 및 운영기술개발" 과제의 연구비 지원에 의해 수행되었습니다.

References

  1. Choi, Y.S., Kim, J.H., and Kim, J.S. (2020). "Inundation analysis on the flood plain in ungauged area using satellite rainfall and global geographic data: in the case of Tumen/Namyang Area in Dumap-gang (Riv.)." Journal of the Korean Association of Geographic Information Studies, Vol. 23, No. 1, pp. 55-64. doi: 10.11108/kagis.2020.23.1.051.
  2. Dellepiane, S.G., and Angiati, E. (2012). "A new method for crossnormalization and multitemporal visualization of SAR images for the detection of flooded areas." IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. 50, No. 7, pp. 2765-2779. doi: 10.1109/TGRS.2011.2174999.
  3. Eum, T.S., Shin, E.T., and Song, C.G. (2022). "Analysis of present status and characteristics of elementary technologies for smart river management." Journal of Korean Society of Disaster and Security, Vol. 15, No. 1, pp. 13-21, doi: 10.21729/ksds.2022.15.1.13.
  4. European Space Agency (ESA) (2012). Sentinel-1:ESA's radar observatory mission for GMES operational services. ESA Communications, Noordwijk, The Netherlands.
  5. Garcia-Pintado, J., Neal, J.C., Mason, D.C., Dance, S., and Bates, P. (2013). "Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling." Journal of Hydrology, Vol. 495, pp. 252-266. doi: 10.1016/j.jhydrol.2013.03.050.
  6. Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., and Pfister, L. (2009). "Water-level estimation and reduction of hydraulic model calibration uncertainties using satellite SAR images of floods." IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 2, pp. 431-441. doi: 10.1109/TGRS.2008.2008718.
  7. Islam, M.M., and Sado, K. (2000). "Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS." Hydrological Sciences Journal, Vol. 45, No. 3, pp. 337-355. doi: 10.1080/02626660009492334.
  8. Jeong, H.R., and Lim, H.S. (2009). "Technical development trend of international synthetic aperture radar satellite" Current Industrial and Technological Trends in Aerospace, Vol. 7, No. 2, pp. 25-32.
  9. Kim, S.C., and Lee, J.S. (2021) "Analysis of hydraulic characteristics in river using 3D geospatial information." Proceeding of the 2021 May Korea Water Resources Association Conference. KWRA, p. 33.
  10. Kwag, Y.K. (2011). "Technological trends of Satellite Imaging Radar (SAR)." The Proceedings of the Korean Institute of Electromagnetic Engineering and Science, Vol. 22, No. 6, pp. 4-46.
  11. Lim, Y.H., and Kang, M.J. (2017). "The covet the nature of the world, (The Eye): copernicus project of EU." Planning and Policy, Vol. 425, pp. 78-84.
  12. Mason, D.C., Trigg, M., Garcia-Pintado, J., Cloke, H.L., Neal, J.C., and Bates, P.D. (2016). "Improving the TanDEM-X digital elevation model for flood modelling using flood extents from synthetic aperture radar images." Remote Sensing of Environment, Vol. 173, pp. 15-28. doi: 10.1016/j.rse.2015.11.018.
  13. Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and Savenije, H.H.G. (2011). "Towards an automated SARbased flood monitoring system: lessons learned from two case studies." Physics and Chemistry of the Earth, Vol. 36, No. 7-8, pp. 241-252. doi: 10.1016/j.pce.2010.12.009.
  14. Neal, J., Schumann, G., and Bates, P. (2012). "A subgrid channel model for simulating hydraulics and floodplain inundation over large and data sparse areas." Water Resources Research, Vol. 48, W11506. doi: 10.1029/2012WR012514.
  15. Raclot, D. (2006). "Remote sensing of water levels on floodplains: a spatial approach guided by hydraulic functioning." International Journal of Remote Sensing, Vol. 27, No. 12, pp. 2553-2574. doi: 10.1080/01431160600554397.
  16. Rodriguez, E., Morris, C.S., and Belz, J.E. (2006). "A global assessment of the SRTM performance." Photogrammetric Engineering & Remote Sensing, Vol. 72, No. 3, pp. 249-260. doi: 10.14358/PERS.72.3.249.
  17. Schumann, G.J-P., Neal, J.C., Mason, D.C., and Bates, P.D. (2011). "The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods." Remote Sensing of Environment, Vol. 115, No. 10, pp. 2536-2546. doi: 10.1016/j.rse.2011.04.039.
  18. Sun, G., Ranson, K.J, Kharuk, V.I. and Kovacs, K. (2003). "Validation of surface height from shuttle radar topography mission using shuttle laser altimeter." Remote Sensing of Environment, Vol. 88, No. 4, pp. 401-411. doi: 10.1016/j.rse.2003.09.001.
  19. Tanaka, K., Fujihara, Y., Hoshikawa K., and Fujii, H. (2019). "Development of a flood water level estimation method using satellite images and a digital elevation model for the Mekong floodplain." Hydrological Sciences Journal, Vol. 64, No. 2, pp. 241-253. doi: 10.1080/02626667.2019.1578463.
  20. Yan, K., Di Baldassarre, G., Solomatine, D.P., and Schumann, G.J-P. (2015). "A review of lowcost space-borne data for flood modelling: topography, flood extent and water level." Hydrological Processes, Vol. 29, No. 15, pp. 3368-3387. doi: 10.1002/hyp.10449.