과제정보
본 연구는 2020년 국방과학연구소 미래도전국방기술 연구개발사업(912904601)의 지원을 받았음.
참고문헌
- A. Goldhoorn, A. Garrell, R. Alquezar, and A. Sanfeliu, "Searching and tracking people with cooperative mobile robots," Autonomous Robots, Vol.42, No.4, pp.739-759, 2018. https://doi.org/10.1007/s10514-017-9681-6
- P. Rani, C. Liu, N. Sarkar, and E. Vanman, "An empirical study of machine learning techniques for affect recognition in human-robot interaction," Pattern Analysis and Applications, Vol.9, No.1, pp.58-69, 2006. https://doi.org/10.1007/s10044-006-0025-y
- C. Y. Park, H. S. Kim, and I. C. Kim, "Learning relational instance-based policies from user demonstrations," Journal of KIISE : Software and Applications, Vol.37, No. 5, pp.363-369, 2010.
- J. G. C. Zuluaga, J. P. Leidig, C. Trefftz, and G. Wolffe, "Deep reinforcement learning for autonomous search and rescue," NAECON 2018-IEEE National Aerospace and Electronics Conference, pp.521-524, 2018.
- J. G. C. Zuluaga, J. P. Leidig, C. Trefftz, and G. Wolffe, "Deep reinforcement learning for autonomous search and rescue," NAECON 2018-IEEE National Aerospace and Electronics Conference, IEEE, pp.521-524, 2018.
- Y. S. Ko et al., "Guideline of quality control for AI learning data v1.0," Ministry of Science and ICT, 2021.
- A. S. Rao and M. P. Georgeff, "BDI agents: From theory to practice," ICMAS, Vol.95, pp.312-319, 1995.
- H. K. Bui, Y. D. Lin, R. H. Hwang, P. C. Lin, V. L. Nguyen, and Y. C. Lai, "CREME: A toolchain of automatic dataset collection for machine learning in intrusion detection," Journal of Network and Computer Applications, Vol.193, pp.103212, 2021. https://doi.org/10.1016/j.jnca.2021.103212
- J. Liu, F. Zhu, C. Chai, Y. Luo, and N. Tang, "Automatic data acquisition for deep learning," Proceedings of the VLDB Endowment, Vol.14, No.12, pp.2739-2742, 2021. https://doi.org/10.14778/3476311.3476333
- B. Choi, J. Lee, S. Park, and J. Lee, "A Model-Based Interface to Cloud Services for Intelligent Service Robots," KIPS Transactions on Software and Data Engineering, Vol.9, No.1, pp.1-10, 2020. https://doi.org/10.3745/KTSDE.2020.9.1.1