Acknowledgement
This work was supported by the Foundation of the National Natural Science Foundation of China under Grant No. 61941303, 62073118 and the Natural Science Foundation of Hebei Province under Grant No. F2020202009.
References
- Dragicevic, T., Lu, X.: DC microgrids-Part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electr. 31(5), 3528-3549 (2016) https://doi.org/10.1109/TPEL.2015.2464277
- Emadi, A., Khaligh, A., Rivetta, C.H.: Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Vehic. Technol. 55(4), 1112-1125 (2006) https://doi.org/10.1109/TVT.2006.877483
- Xu, Q., Vafamand, N., Chen, L., Blaabjerg, F.: Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids. IEEE J. Emerg. Select. Top. Power Electr. 9(2), 1205-1221 (2021) https://doi.org/10.1109/JESTPE.2020.2978064
- Martinez-Trevino, B.A.: Sliding-mode control of a boost converter under constant power loading conditions. IET Power Electr. 12(3), 521-529 (2019) https://doi.org/10.1049/iet-pel.2018.5098
- Andresartinez, O., Floreslacuahuac, A.: Nonlinear model predictive stabilization of DC-DC boost converters with constant power loads. IEEE J. Emerg. Select. Top. Power Electr. 9(1), 822-830 (2021) https://doi.org/10.1109/JESTPE.2020.2964674
- Xu, Q., Zhang, C., Wen, C., Wang, P.: A novel compo-site nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Trans. Smart Grid. 10(1), 752-761 (2019) https://doi.org/10.1109/TSG.2017.2751755
- Chettibi, N., Mellit, A., Sulligoi, G.: Adaptive neural networkbased control of a hybrid AC/DC micro-grid. IEEE Trans. Smart Grid. 9(3), 1667-1679 (2018)
- Ortega, R., Loria, A.: Passivity-based control of euler-lagrange systems: mechanical, electrical and electromechanical applications (Communications and Control Engineering). Springer, London (1998)
- Leyva, R., Cid-Pastor, A., Alonso, C., et al.: Passivity-based integral control of a boost converter for large-signal stability. IEEE Proc. Control Theor. Appl. 153(2), 139-146 (2006) https://doi.org/10.1049/ip-cta:20045223
- Zeng, J., Zhang, Z., Qiao, W.: An interconnection and damping assignment passivity-based controller for a DC-DC boost converter with a constant power load. IEEE Trans. Ind. Appl. 50(4), 2314-2322 (2014) https://doi.org/10.1109/TIA.2013.2290872
- Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance observerbased control: methods and applications. CRC Press, Boca Raton (2014)
- Hassan, M.A., Li, E.P., Li, X.: Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems. IEEE J. Emerg. Select. Top. Power Electr. 7(3), 2029-2040 (2019) https://doi.org/10.1109/JESTPE.2018.2874449
- Bottrell, N., Prodanovic, M., Green, T.C.: Dynamic stability of a microgrid with an active load. IEEE Trans. Power Electr. 28(11), 5107-5119 (2013) https://doi.org/10.1109/TPEL.2013.2241455
- Kwasinski, A., Onwuchekwa, C.N.: Dynamic behavior and stabilization of DC microgrids with instantaneous constant-power loads. IEEE Trans. Power Electr. 26(3), 822-834 (2011) https://doi.org/10.1109/TPEL.2010.2091285
- Mian, W., Zhihe, W.: Passivity based control of boost type DC-DC Converter. Trans. China Electrotech. Soc. 30(1), 80-85 (2015)
- Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(910), 924-941 (2003) https://doi.org/10.1080/0020717031000099029