DOI QR코드

DOI QR Code

Online voltage phase synchronization in receiving coils of multi-input wireless power transfer

  • Zhao, Yu (College of Electrical Engineering, Zhejiang University) ;
  • Yang, Shiyou (College of Electrical Engineering, Zhejiang University)
  • Received : 2021.12.21
  • Accepted : 2022.06.27
  • Published : 2022.11.20

Abstract

In multi-input wireless power transfer (WPT) systems, it is plagued to create a destructive interference between the multiple transmitters to result in a relatively low voltage delivered to the receiving coil and load, due to the phase differences of the received voltages from different transmitters. In this regard, it is essential to synchronize the phases of the received voltages of the receiving coil from different transmitters. However, the existing offline synchronization methodologies rely heavily on an analytical form solution of the received voltage in a receiver. In most engineering application scenarios, such close-form solution is almost impossible. Moreover, the close form solution, even if possible, will vary with the operating conditions and environments. To eliminate these deficiencies of existing synchronization methodologies, an online synchronization methodology is proposed for a multi-input WPT system. In the proposed methodology, the received voltages from different transmitters are determined from a series of online voltage samplings under different offset phases, and a synchronization strategy is then proposed and implemented. A multi-input WPT prototype is developed to test the feasibility of the proposed synchronization methodology. The experimental results have demonstrated that the received voltage is significantly enhanced by applying the proposed online phase synchronization methodology.

Keywords

References

  1. Zhang, Z., Pang, H.L., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/TIE.2018.2835378
  2. Wu, J.D., Zhao, C.W., Lin, Z.Y., Du, J., Hu, Y.H., He, X.N.: Wireless power and data transfer via a common inductive link using frequency division multiplexing. IEEE Trans. Power Electron. 62(12), 7810-7820 (2015)
  3. Covic, G.A., Boys, J.T.: Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 1(1), 28-41 (2013) https://doi.org/10.1109/JESTPE.2013.2264473
  4. Xiao, L., Ping, W., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv Tutor. 18(2), 1413-1452 (2016) https://doi.org/10.1109/COMST.2015.2499783
  5. Hui, S.Y.: Planar wireless charging technology for portable electronic products and qi. Proc. IEEE 101(6), 1290-1301 (2013) https://doi.org/10.1109/JPROC.2013.2246531
  6. Taylor, J. A., Low, Z. N., Casanova, J., Lin, J.: A wireless power station for laptop computers. In: Proc. IEEE Radio Wireless Symposium, pp. 625-628 (2010)
  7. Hoang, H., Lee, S., Kim, Y., Choi, Y., Bien, F.: An adaptive technique to improve wireless power transfer for consumer electronics. IEEE Trans. Consum. Electron. 58(2), 327-332 (2012) https://doi.org/10.1109/TCE.2012.6227430
  8. Hui, S.Y.R., Zhong, W.X., Lee, C.K.: A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500-4511 (2014) https://doi.org/10.1109/TPEL.2013.2249670
  9. Chen, X., Yu, S.B., Zhang, Z.: A receiver-controlled coupler for multiple output wireless power transfer applications. IEEE Trans. Circ. Syst. I Reg. Papers 66(99), 4542-4552 (2019) https://doi.org/10.1109/TCSI.2019.2924949
  10. Bou-Balust, E., Hu, A.P., Alarcon, E.: Scalability analysis of SIMO non-radiative resonant wireless power transfer systems based on circuit models. IEEE Trans. Circuits Syst. I Reg. Papers 62(10), 2574-2583 (2015) https://doi.org/10.1109/TCSI.2015.2469015
  11. Yang, G., Moghadam, M.R.V., Zhang, R.: Magnetic MIMO signal processing and optimization for wireless power transfer. IEEE Trans. Signal Process. 65(11), 2860-2874 (2017) https://doi.org/10.1109/TSP.2017.2673816
  12. Arnitz, D., Reynolds, M.S.: MIMO wireless power transfer for mobile devices. IEEE Pervas. Comput. 15(4), 36-44 (2016) https://doi.org/10.1109/MPRV.2016.67
  13. Yoon, I.J., Hao, L.: Investigation of near-field wireless power transfer under multiple transmitters. IEEE Antennas Wirel. Propag. Lett. 10, 662-665 (2011) https://doi.org/10.1109/LAWP.2011.2160518
  14. Huh, S., Ahn, D.: Two-transmitter wireless power transfer with optimal activation and current selection of transmitters. IEEE Trans. Power Electron. 33(6), 4957-4967 (2018) https://doi.org/10.1109/TPEL.2017.2725281
  15. Uchida, A., Shimokawa, S., Kawano, H., Matsui, K., Ozaki, K., Taguchi, M.: Phase and intensity control of multiple coil currents in mid-range wireless power transfer. IET Microw. Antennas Propag. 8(7), 498-505 (2014) https://doi.org/10.1049/iet-map.2013.0055
  16. Johari, R., Krogmeier, J.V., Love, D.J.: Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance. IEEE Trans. Ind. Electron. 61(4), 1774-1783 (2014) https://doi.org/10.1109/TIE.2013.2263780
  17. Zhong, W.X., Lee, C.K., Hui, S.: General analysis on the use of Tesla's resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 60(1), 261-270 (2013) https://doi.org/10.1109/TIE.2011.2171176
  18. Nguyen, M.Q., Chou, Y., Plesa, D., Rao, S., Chiao, J.: Multipleinputs and multiple-outputs wireless power combining and delivering systems. IEEE Trans. Power Electron. 30(11), 6254-6263 (2015) https://doi.org/10.1109/TPEL.2015.2438016
  19. Lee, K., Cho, D.H.: Diversity analysis of multiple transmitters in wireless power transfer system. IEEE Trans. Magn. 49(6), 2946-2952 (2013) https://doi.org/10.1109/TMAG.2012.2234132
  20. Liu, X.Q., Mei, B.Q., Wang, X.D., Wen, Z.G.: Magnetic transceiver beamforming for a 2 × 2 magnetic resonance charging system. IEEE J. Electromagn. RF Microw. Med. Biol. 2(3), 186-192 (2018) https://doi.org/10.1109/JERM.2018.2847656
  21. Waters, B.H., Mahoney, B.J., Ranganathan, V., Smith, J.R.: Power delivery and leakage field control using an adaptive phased array wireless power system. IEEE Trans. Power Electron. 30(11), 6298-6309 (2015) https://doi.org/10.1109/TPEL.2015.2406673
  22. Jiwariyavej, V., Imura, T., Hori, Y.: Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 191-200 (2014) https://doi.org/10.1109/JESTPE.2014.2332056
  23. Li, S.F., Cheng, L.L., Li, F.W.: Online parameter estimation for wireless power transmission systems using reflected impedance angle tangent. J. Power Electron. 18(1), 300-308 (2018)
  24. Dai, X., Li, X., Li, Y., Hu, A.P.: Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans. Power Electron. 33(6), 5005-5015 (2017)
  25. Su, Y., Zhang, H., Wang, Z., Hu, A.P., Chen, L., Sun, Y.: Steadystate load identification method of inductive power transfer system based on switching capacitors. Trans. Power Electron. 30(11), 6349-6355 (2015) https://doi.org/10.1109/TPEL.2015.2411755
  26. Arakawa, T., Goguri, S., Krogmeier, J.V., Kruger, A., Love, D.J., Mudumbai, R.: Optimizing wireless power transfer from multiple transmit coils. IEEE Access 6, 23828-23838 (2018) https://doi.org/10.1109/ACCESS.2018.2825290