DOI QR코드

DOI QR Code

New thyristor-based hybrid DC circuit breaker with reverse injection of resonant current

  • Cha, Jee‑Yoon (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Eui‑Jae (Department of Electrical and Computer Engineering, Ajou University) ;
  • Han, Byeol (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo‑Beum (Department of Electrical and Computer Engineering, Ajou University) ;
  • Han, Byung‑Moon (Department of Energy IT, Gachon University)
  • Received : 2022.02.23
  • Accepted : 2022.08.11
  • Published : 2022.11.20

Abstract

This paper proposes a thyristor-based hybrid DC circuit breaker (HDCCB), which is composed of a fast mechanical circuit breaker and an LC resonant circuit with thyristor switches. The proposed HDCCB provides a zero-crossing point for fault current by injecting a resonant current in the reverse direction of the fault current. The proposed HDCCB has a low conduction loss in normal operation using a mechanical circuit breaker, and it offers the advantages of low cost, high reliability, and large capacity using thyristor switches instead of IGBT switches. It also has the design flexibility to adjust the magnitude of the injection current depending on the fault current level. A bidirectional HDCCB is also proposed by adding several components to the developed unidirectional HDCCB, which can offer compact system size and low system cost. Design considerations of the proposed structure are discussed. The validity of the proposed HDCCB is verified by simulation and experimental results.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation. (Grant Number: R21XO01-11). This research was supported by Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2021M1A2A2065441)

References

  1. Wen, W., Li, B., Li, B., Liu, H., He, J., Ma, J., Li, Y.: Analysis and experiment of a micro-loss multi-port hybrid DCCB for MVDC distribution system. IEEE Trans. Power Electron. 34(8), 7933-7941 (2019) https://doi.org/10.1109/TPEL.2018.2881000
  2. Peng, C., Song, X., Huang, A.Q., Husain, I.: A medium-voltage hybrid DC circuit breaker-Part II: ultrafast mechanical switch. IEEE J. Emerg. Sel Topics Power Electron. 5(1), 289-296 (2017) https://doi.org/10.1109/JESTPE.2016.2609391
  3. Shi, Y., Li, H.: Isolated modular multilevel DC-DC converter with DC fault current control capability based on current-fed dual active bridge for MVDC application. IEEE Trans. Power Electron. 33(3), 2145-2161 (2018) https://doi.org/10.1109/TPEL.2017.2695575
  4. Ali, M.A., Barakat, M.M., Abokhalaf, M.M., Fadel, Y.H., Kandil, M., Rasmy, M.W., Ali, O.N., Besheer, A.H., Emara, H.M., Bahgat, A.: Micro-grid monitoring and supervision: web-based SCADA approach. J. Electr. Eng. Technol. 16(5), 2313-2331 (2021) https://doi.org/10.1007/s42835-021-00762-0
  5. Huai, Q., Qin, L., Liu, K., Xu, Y., Wang, F., Ding, H.: Improved hausdorff distance based pilot protection for multi-terminal HVDC system. J. Electr. Eng. Technol. 16(4), 1955-1969 (2021) https://doi.org/10.1007/s42835-021-00748-y
  6. Wang, W., Barnes, M., Marjanovic, O., Cwikowski, O.: Impact of DC breaker systems on multi-terminal VSC-HVDC stability. IEEE Trans. Power Del. 31(2), 769-779 (2016)
  7. Park, S.-Y., Choi, H.-S.: Characteristics of arc-induction type DC circuit breaker depending on alteration of induction needle. J. Electr. Eng. Technol. 15(1), 279-285 (2020) https://doi.org/10.1007/s42835-019-00320-9
  8. Lee, J.-H., Park, M.-S., Ahn, H.-S., Park, K.-W., Oh, J.-S., Jeon, S.-G., Kim, D.-K., Kim, J.-E.: Method for protection of singleline- ground fault of distribution system with DG using distance relay and directional delay. J. Electr. Eng. Technol. 15(4), 1607-1616 (2020) https://doi.org/10.1007/s42835-020-00452-3
  9. Park, S.-Y., Choi, H.-S.: Analysis of operating characteristics of a superconducting arc-induction type DC circuit breaker using the Maxwell program. J. Electr. Eng. Technol. 16(2), 861-866 (2021) https://doi.org/10.1007/s42835-021-00659-y
  10. Xing, L., Zhang, X., Tong, Q., Xing, G.: Study of ablation of arc contacts and dynamic contact resistance in high current breaker. J. Electr. Eng. Technol. 15(3), 1015-1023 (2020) https://doi.org/10.1007/s42835-020-00381-1
  11. Keshavarzi, D., Farjah, E., Ghanbari, T.: Hybrid DC circuit breaker and fault current limiter with optional interruption capability. IEEE Trans. Power Electron. 33(3), 2330-2338 (2018) https://doi.org/10.1109/TPEL.2017.2690960
  12. Choi, H.-W., Park, S.-Y., Choi, H.-S.: Characteristics of a currentlimiting DC circuit breaker with a superconducting coil applied to the commutation circuit. J. Electr. Eng. Technol. 15(4), 1921-1926 (2020) https://doi.org/10.1007/s42835-020-00469-8
  13. Shukla, A., Demetriades, G.D.: A survey on hybrid circuit-breaker topologies. IEEE Trans. Power Del. 30(2), 627-641 (2015) https://doi.org/10.1109/TPWRD.2014.2331696
  14. Guo, Y., Wang, G., Zeng, D., Li, H., Chao, H.: A thyristor fullbridge-based DC circuit breaker. IEEE Trans. Power Electron. 35(1), 1111-1123 (2020)
  15. Callavik, M., Blomberg, A., Hafner, J., Jacobson, B.: The hybrid HVDC breaker: An innovation breakthrough enabling reliable HVDC grids. ABB Grid Syst. Tech. Paper 361, 143 (2012)
  16. Suliman, M.Y., Ghazal, M.: Design and implementation of overcurrent protection relay. J. Electr. Eng. Technol. 15(4), 1595-1605 (2020) https://doi.org/10.1007/s42835-020-00447-0
  17. Keshavarzi, D., Farjah, E., Ghanbari, T.: Hybrid DC circuit breaker and fault current limiter with optional interruption capability. IEEE Trans. Power Del. 33(3), 2330-2338 (2018) https://doi.org/10.1109/TPEL.2017.2690960
  18. Peng, C., Husain, I., Huang, A., Lequesne, B., Briggs, R.: A fast mechanical switch for medium-voltage hybrid DC and AC circuit breakers. IEEE Trans. Ind. Appl. 52(4), 2911-2918 (2016) https://doi.org/10.1109/TIA.2016.2539122
  19. Jiang, W., Liu, X., Chen, H., Li, P., Zhang, Y.: Topology, modeling and transient current transfer analysis of DC hybrid vacuum circuit breaker based on SiC module. J. Electr. Eng. Technol. 16(5), 2809-2816 (2021) https://doi.org/10.1007/s42835-021-00773-x
  20. Abramovitx, A., Ma Smedley, K.: Survey of solid-state fault current limiters. IEEE Trans. Power Electron. 27(6), 2770-2782 (2012) https://doi.org/10.1109/TPEL.2011.2174804
  21. Wu, B.: High-power converters and AC drives. Wiley, Hoboken (2007)
  22. Lazzari, R., Piegari, L.: Design and implementation of LVDC hybrid circuit breaker. IEEE Trans. Power Electron. 34(8), 7369-7380 (2019) https://doi.org/10.1109/TPEL.2018.2878655
  23. Yu, J.-Y., Kim, J.-Y., Song, S.-M., Ayubu, Z., Kim, I.-D.: New DC solid-state circuit breaker with natural charging operation. IEEE Trans. Ind. Electron. 68(11), 10360-10368 (2021) https://doi.org/10.1109/TIE.2020.3038094