DOI QR코드

DOI QR Code

Evaluation of DPWM schemes for Si/SiC three-level hybrid active NPC inverters

  • Zhuge, Huizi (College of Energy and Electrical Engineering, Hohai University) ;
  • Zhang, Li (College of Energy and Electrical Engineering, Hohai University) ;
  • Lou, Xiutao (College of Energy and Electrical Engineering, Hohai University) ;
  • Lei, Zhengzi (College of Energy and Electrical Engineering, Hohai University) ;
  • Zou, Yuhang (Jiangsu Key Laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics and Astronautics)
  • Received : 2021.12.14
  • Accepted : 2022.06.16
  • Published : 2022.11.20

Abstract

The hybrid utilization of SiC and Si devices can achieve a trade-of between the efficiency and cost of three-level active neutral-point-clamped (3L-ANPC) inverters. This paper studies a three-phase 2-SiC 3L-hybrid ANPC (3L-HANPC) inverter with different discontinuous pulse width modulation (DPWM) schemes. The principles of these DPWM schemes are analyzed in detail, and carrier-based algorithm for two of the DPWM schemes are given. Finally, a 6 kW three-phase 2-SiC 3L-HANPC inverter prototype was built to compare these two modulation schemes. Experimental results show that DPWM1 with its peak voltage-clamped can achieve a higher efficiency than DPWM2 with its zero-crossing clamped. However, the DPWM2 scheme has a lower THD than the DPWM1 scheme. Since the THD improvement contributed by the DPWM2 scheme is relatively small, the DPWM1 scheme is the preferred DPWM scheme.

Keywords

Acknowledgement

This paper was supported in part by the National Natural Science Foundation of China under Grant 52177176, and the Six Talent Peaks Project in Jiangsu Province under Grant 2019-TD-XNY-001.

References

  1. Yuan, X., Laird, I., Walder, S.: Opportunities, challenges, and potential solutions in the application of fast-switching sic power devices and converters. IEEE Trans. Power Electron. 36(4), 3925-3945 (2021) https://doi.org/10.1109/TPEL.2020.3024862
  2. Bo, Q., Wang, L.F., Zhang, Y.W.: A SiC MOSFET-based parallel multi-inverter inductive power transfer (IPT) system. J. Power Electron (2022). https://doi.org/10.1007/s43236-022-00393-2
  3. Wang, F., Ji, S.Q.: Benefits of high-voltage SiC-based power electronics in medium-voltage power-distribution grids. Chin. J. Electr. Eng. 7(1), 1-26 (2021) https://doi.org/10.23919/CJEE.2021.9675054
  4. Song, X.Q., Zhang, L.Q., Huang, A.Q.: Three-terminal Si/SiC hybrid switch. IEEE Trans. Power Electron. 35(9), 8867-8871 (2020) https://doi.org/10.1109/TPEL.2020.2969895
  5. Liu, C., Zhuang, K.H., Pei, Z.C., Zhu, D., Li, X.J., Yu, Q.H., Xin, H.H.: Hybrid SiC-Si DC-AC topology: SHEPWM Si-IGBT master unit handling high power integrated with partial-power SiC-MOSFET slave unit improving performance. IEEE Trans. Power Electron. 37(3), 3085-3098 (2022) https://doi.org/10.1109/TPEL.2021.3114322
  6. Zhang, L., Zheng, Z.S., Lou, X.T.: A review of WBG and Si devices hybrid applications. Chin. J. Electr. Eng. 7(2), 1-20 (2021) https://doi.org/10.23919/CJEE.2021.000012
  7. Rizzoli, G., Mengoni, M., Zarri, L., Tani, A., Serra, G., Casadei, D.: Comparative experimental evaluation of zero-voltage-switching Si inverters and hard-switching Si and SiC inverters. IEEE J. Emerg. Select. Top. Power Electron. 7(1), 515-527 (2019) https://doi.org/10.1109/JESTPE.2018.2831603
  8. Gu, C., Wang, X.L., Deng, Z.Q.: Evaluation of three improved space-vector-modulation strategies for the high-speed permanent magnet motor fed by a SiC/Si hybrid inverter. IEEE Trans. Power Electron. 36(4), 4399-4409 (2021) https://doi.org/10.1109/TPEL.2020.3025230
  9. Li, C.S., Lu, R., Li, C.M., Li, Q.H., Gu, X.W., Fang, Y.T., Ma, H., He, X.N.: Space vector modulation for SiC and Si Hybrid ANPC converter in medium-voltage high-speed drive system. IEEE Trans. Power Electron. 35(4), 3390-3401 (2020) https://doi.org/10.1109/TPEL.2019.2934129
  10. Lee, J., Lee, K.: Carrier-based discontinuous PWM method for vienna rectifiers. IEEE Trans. Power Electron. 30(6), 2896-2900 (2015) https://doi.org/10.1109/TPEL.2014.2365014
  11. Lee, J., Lee, K.: Performance analysis of carrier-based discontinuous PWM method for vienna rectifiers with neutral-point voltage balance. IEEE Trans. Power Electron. 31(6), 4075-4084 (2016) https://doi.org/10.1109/TPEL.2015.2477828
  12. Zhang, L., Zhao, R., Ju, P., Ji, C.H., Zou, Y.H., Ming, Y., Xing, Y.: A modified dpwm with neutral point voltage balance capability for three-phase Vienna rectifiers. IEEE Trans. Power Electron. 36(1), 263-273 (2021) https://doi.org/10.1109/TPEL.2020.3002660
  13. Zou, Y.H., Zhang, L., Zhao, R., Xing, Y.: Discontinuous pulse width modulation and voltage harmonic analysis method for threephase Vienna-type rectifiers. Proc. CSEE 40(24), 8123-8130 (2020)
  14. Artal-Sevil, J.S., Bernal-Ruiz, C., Dominguez-Navarro, J.A., Bernal-Agustin, J.L.: Analysis of the DPWM technique applied to a grid-connected 3L-NPC inverter, in FACTS Technologies and Power Quality in smart Grid. 21st European Conference on Power Electronics and Applications (2019). https://doi.org/10.23919/EPE.2019.8915574
  15. Liao, Y.H., Chen, J.Y., Zhou, Y.: A novel carrier scheme combined with DPWM technique in a ZVS grid-connected three-phase inverter. Electronics 11(4), 656 (2022) https://doi.org/10.3390/electronics11040656
  16. Zou, Y.H., Zhang, L., Xing, Y., Zhang, Z., Zhao, H., Zheng, Z.S.: A unified carrier-based pulsewidth modulation for three-phase Vienna-type rectifiers. IEEE Trans. Power Electron. 37(5), 5749-5762 (2022) https://doi.org/10.1109/TPEL.2021.3130065
  17. Jiang, W.D., Jiang, H.R., Liu, S.Y., Ji, S.Z., Wang, J.P.: A Carrier-Based Discontinuous PWM Strategy for T-Type Three-Level Converter With Reduced Common Mode Voltage, Switching Loss, and Neutral Point Voltage Control. IEEE Trans. Power Electron. 37(2), 1761-1771 (2022)
  18. Gao, Z., Li, Y.H., Ge, Q.X., Zhao, L., Zhang, B.: Research on carrier-based improved synchronized discontinuous pulse width modulation for three-level inverter. Proc. CSEE 40(17), 5629-5635 (2020)
  19. Zhang, D., He, J.B., Pan, D.: A megawatt-scale medium-voltage high-efficiency high power density "SiC+Si" hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems. IEEE Trans. Ind. Appl. 55(6), 5971-5980 (2019) https://doi.org/10.1109/TIA.2019.2933513
  20. Guan, Q.X., Li, C.S., Zhang, Y., Wang, S., Xu, D.D., Li, W.H.: An extremely high efficient three-level active neutral-point-clamped converter comprising SiC and Si hybrid power stages. IEEE Trans. Power Electron. 33(10), 8341-8352 (2018) https://doi.org/10.1109/TPEL.2017.2784821
  21. He, J., Zhang, D., Pan, D.: An improved PWM strategy for "SiC+Si" three-level active neutral point clamped converter in high-power high-frequency applications. IEEE Energy Convers. Congr. Expos. (2018). https://doi.org/10.1109/ECCE.2018.8557800
  22. Deng, Y., Li, J., Shin, K.H., Viitanen, T., Saeedifard, M., Harley, R.G.: Improved modulation scheme for loss balancing of threelevel active NPC converters. IEEE Trans. Power Electron. 32(4), 2521-2532 (2017) https://doi.org/10.1109/TPEL.2016.2573823
  23. Zou, Y.H., Xing, Y., Zhang, L., Zheng, Z.S., Liu, X.L., Hu, H.B., Wang, T.Y., Wang, Y.S.: Dynamic-space-vector discontinuous PWM for three-phase Vienna rectifiers with unbalanced neutralpoint voltage. IEEE Trans. Power Electron. 36(8), 9015-9026 (2021) https://doi.org/10.1109/TPEL.2021.3057120