DOI QR코드

DOI QR Code

Robust model predictive current control for six-phase PMSMS with virtual voltage vectors

  • Yao, Ming (School of Automobile and Traffic Engineering, Jiangsu University) ;
  • Peng, Jingyao (School of Automobile and Traffic Engineering, Jiangsu University) ;
  • Sun, Xiaodong (Automotive Engineering Research Institute, Jiangsu University)
  • Received : 2022.03.19
  • Accepted : 2022.06.30
  • Published : 2022.11.20

Abstract

In this paper, a compensation prediction model current control based on the extended state observer is proposed for the static errors and oscillations of output current caused by parameter disturbance deviations. First, the parameter change part is regarded as the total disturbance, and a mathematical model of the motor is established. Then, virtual voltage vectors are introduced to eliminate the effect of leakage inductance mismatch and to further suppress current harmonics. Furthermore, the state observer is designed to estimate disturbances and currents. The estimated values from the state observer are used as the feedforward part to cancel disturbances in the system. Then, the stability of the proposed algorithm is verified by a pole configuration analysis. Finally, the effectiveness of the proposed method is confirmed by a six-phase permanent magnet synchronous hub motor experiment.

Keywords

Acknowledgement

This study was supported by Project of Faculty of Agricultural Equipment of Jiangsu University (NZXB20210103), and Project of Changzhou Science and Technology Support Program (Industry) (CE20220007).

References

  1. Fodorean, D., Sarrazin, M.M., Martis, C.S., Anthonis, J., Van der Auweraer, H.: Electromagnetic and structural analysis for a surface-mounted PMSM used for light-EV. IEEE Trans. Ind. Appl. 52(4), 2892-2899 (2016) https://doi.org/10.1109/TIA.2016.2537784
  2. Shi, Z., et al.: Multiobjective optimization of a five-phase bearingless permanent magnet motor considering winding area. IEEE/ASME Trans. Mechatronics (2021). https://doi.org/10.1109/TMECH.2021.3121802
  3. Zhao, K., et al.: Demagnetization-fault reconstruction and tolerant-control for PMSM using improved SMO-based equivalentinput-disturbance approach. IEEE/ASME Trans. Mechatron. 27, 701-712 (2021) https://doi.org/10.1109/TMECH.2021.3069787
  4. Xu, W., Chen, H., Wang, J., Zhao, H.: Velocity optimization for braking energy management of in-wheel motor electric vehicles. IEEE Access. 7, 66410-66422 (2019) https://doi.org/10.1109/ACCESS.2019.2915102
  5. Sun, X., Diao, K., Lei, G., Guo, Y., Zhu, J.: Direct torque control based on a fast modeling method for a segmented-rotor switched reluctance motor in HEV application. IEEE Trans. Emerg. Sel. Top. Power Electron. 9(1), 232-241 (2021) https://doi.org/10.1109/JESTPE.2019.2950085
  6. Shao, L., Hua, W., Dai, N., Tong, M., Cheng, M.: Mathematical modeling of a 12-phase flux-switching permanent-magnet machine for wind power generation. IEEE Trans. Ind. Electron. 63(1), 504-516 (2016)
  7. Sun, X., Li, T., Tian, X., Zhu, J.: Fault-tolerant operation of a six-phase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors. IEEE Trans. Energy Convers. 37(1), 337-346 (2022) https://doi.org/10.1109/TEC.2021.3109869
  8. Mao, Y., Zuo, S., Cao, J.: Effects of rotor position error on longitudinal vibration of electric wheel system in in-wheel PMSM driven vehicle. IEEE/ASME Trans. Mechatron. 23(3), 1314-1325 (2018) https://doi.org/10.1109/TMECH.2018.2818260
  9. Wu, Z., Yang, Z., Ding, K., He, G.: Transfer mechanism analysis of injected voltage harmonic and its effect on current harmonic regulation in FOC PMSM. IEEE Trans. Power Electron. 37(1), 820-829 (2022) https://doi.org/10.1109/TPEL.2021.3097103
  10. Jin, Z., Sun, X., Lei, G., Guo, Y., Zhu, J.: Sliding mode direct torque control of SPMSMs based on a hybrid wolf optimization algorithm. IEEE Trans. Ind. Electron. 69(5), 4534-4544 (2022)
  11. Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: A robust deadbeat predictive controller with delay compensation based on composite sliding mode observer for PMSMs. IEEE Trans. Power Electron. 36(9), 10742-10752 (2021) https://doi.org/10.1109/TPEL.2021.3063226
  12. Zhang, Z., Xie, E., Cao, Z., Mu, Y.: A position sensorless control strategy for brushless DC motor based on bus current hysteresis loop. In: 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). 149-154 (2020)
  13. Sun, X., Li, T., Zhu, Z., Lei, G., Guo, Y., Zhu, J.: speed sensorless model predictive current control based on finite position set for PMSHM drives. IEEE Trans. Transport. Electrific. 7(4), 2743-2752 (2021) https://doi.org/10.1109/TTE.2021.3081436
  14. Cheema, M.A.M., Fletcher, J.E., Farshadnia, M., Xiao, D., Rahman, M.F.: Combined speed and direct thrust force control of linear permanent-magnet synchronous motors with sensorless speed estimation using a sliding-mode control with integral action. IEEE Trans. Ind. Electron. 64(5), 3489-3501 (2017)
  15. Formentini, A., Trentin, A., Marchesoni, M., Zanchetta, P., Wheeler, P.: Speed finite control set model predictive control of a PMSM fed by matrix converter. IEEE Trans. Ind. Electron. 62(11), 6786-6796 (2015) https://doi.org/10.1109/TIE.2015.2442526
  16. Sun, X., Zhang, Y., Lei, G., Guo, Y., Zhu, J.: An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs. IEEE/ASME Trans. Mechatron. 27(2), 690-700 (2022) https://doi.org/10.1109/TMECH.2021.3068973
  17. Li, X., Xue, Z., Zhang, L., Hua, W.: A low-complexity threevector- based model predictive torque control for SPMSM. IEEE Trans. Power Electron. 36(11), 13002-13012 (2021) https://doi.org/10.1109/TPEL.2021.3079147
  18. Arpacik, O., Ankarali, M.M.: An efficient implementation of online model predictive control with field weakening operation in surface mounted PMSM. IEEE Access. 9, 167605-167614 (2021) https://doi.org/10.1109/ACCESS.2021.3136614
  19. Chen, L., Xu, H., Sun, X., Cai, Y.: Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs. IEEE Trans. Transport. Electrific. 7(3), 1454-1465 (2021) https://doi.org/10.1109/TTE.2021.3053256
  20. Ahn, H., Lee, D.: A new bumpless rotor-flux position estimation scheme for vector-controlled washing machine. IEEE Trans. Ind. Informat. 12(2), 466-473 (2016) https://doi.org/10.1109/TII.2016.2516974
  21. Sun, X., Wu, M., Lei, G., Guo, Y., Zhu, J.: An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. 68(5), 3782-3793 (2021) https://doi.org/10.1109/TIE.2020.2984433
  22. Yuan, X., Zhang, S., Zhang, C., Galassini, A., Buticchi, G., Degano, M.: Improved model predictive current control for SPMSM drives using current update mechanism. IEEE Trans. Ind. Electron. 68(3), 1938-1948 (2021) https://doi.org/10.1109/TIE.2020.2973880
  23. Li, X., Yang, Q., Tian, W., Karamanakos, P., Kennel, R.: A dual reference frame multistep direct model predictive current control with a disturbance observer for SPMSM drives. IEEE Trans. Power Electron. 37(3), 2857-2869 (2022)
  24. Zhang, X., Zhang, L., Zhang, Y.: Model predictive current control for PMSM drives with parameter robustness improvement. IEEE Trans Power Electron. 34(2), 1645-1657 (2019) https://doi.org/10.1109/TPEL.2018.2835835
  25. Sun, X., Zhang, Y., Cai, Y., Tian, X.: Compensated deadbeat predictive current control considering disturbance and VSI nonlinearity for in-wheel PMSMs. IEEE/ASME Trans. Mechatron. (2022). https://doi.org/10.1109/TMECH.2021.3135936
  26. Holakooie, M.H., Ojaghi, M., Taheri, A.: Modified DTC of a six-phase induction motor with a second-order sliding-mode MRAS-based speed estimator. IEEE Trans Power Electron. 34(1), 600-611 (2019) https://doi.org/10.1109/TPEL.2018.2825227
  27. Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: A composite sliding mode control for SPMSM drives based on a new hybrid reaching law with disturbance compensation. IEEE Trans Transport Electrific. 7(3), 1427-1436 (2021) https://doi.org/10.1109/TTE.2021.3052986
  28. Yan, L., Wang, F., Dou, M., Zhang, Z., Kennel, R., Rodriguez, J.: Active disturbance-rejection-based speed control in model predictive control for induction machines. IEEE Trans Ind Electron. 67(4), 2574-2584 (2020) https://doi.org/10.1109/TIE.2019.2912785
  29. Goncalves, P.F.C., Cruz, S.M.A., Mendes, A.M.S.: Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steadystate errors and current harmonics. IEEE Trans. Ind. Electron. 69(1), 130-140 (2022) https://doi.org/10.1109/TIE.2021.3053885
  30. Apte, A., Joshi, V.A., Mehta, H., Walambe, R.: Disturbanceobserver-based sensorless control of PMSM using integral state feedback controller. IEEE Trans. Power Electron. 35(6), 6082-6090 (2020) https://doi.org/10.1109/TPEL.2019.2949921
  31. Bermudez, M., Arahal, M.R., Duran, M.J., Gonzalez-Prieto, I.: Model predictive control of six-phase electric drives including ARX disturbance estimator. IEEE Trans. Ind. Electron. 68(1), 81-91 (2021) https://doi.org/10.1109/TIE.2019.2962477
  32. Qu, L., Qiao, W., Qu, L.: Active-disturbance-rejection-based sliding-mode current control for permanent-magnet synchronous motors. IEEE Trans. Power Electron. 36(1), 751-760 (2021)
  33. Xu, Y., Zheng, B., Wang, G., Yan, H., Zou, J.: Current harmonic suppression in dual three-phase permanent magnet synchronous machine With extended state observer. IEEE Trans. Power Electron. 35(11), 12166-12180 (2020) https://doi.org/10.1109/TPEL.2020.2989624
  34. Liu, S., Liu, C.: Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans. Ind. Electron. 68(3), 2048-2058 (2021) https://doi.org/10.1109/TIE.2020.2973905
  35. Wang, L., Wang, M., Guo, B., Wang, Z., Wang, D., Li, Y.: Analysis and design of a speed controller for electric load simulators. IEEE Trans. Ind. Electron. 63(12), 7413-7422 (2016) https://doi.org/10.1109/TIE.2016.2592861
  36. Andriollo, M., Bettanini, G., Martinelli, G., Morini, A., Tortella, A.: Analysis of double-star permanent-magnet synchronous generators by a general decoupled d-q Model. IEEE Trans. Ind. Appl. 45(4), 1416-1424 (2009) https://doi.org/10.1109/TIA.2009.2023553