Acknowledgement
This work was supported by the National Natural Science Foundation of China under Grant No. 52007102, and State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology (No. EERIKF2021015).
References
- Gan, C., Wu, J., Sun, Q., et al.: A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications. IEEE Access. 6, 31430-31443 (2018) https://doi.org/10.1109/ACCESS.2018.2837111
- Peng, F., Ye, J., Emadi, A.: An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives. IEEE Trans. Power Electron. 32(11), 8618-8631 (2017) https://doi.org/10.1109/TPEL.2016.2642339
- Ge, L., Burkhart, B., Doncker, R.-W.-D.: Fast iron loss and thermal prediction method for power density and efficiency improvement in switched reluctance machines. IEEE Trans. Ind. Electron. 67(6), 4463-4473 (2020) https://doi.org/10.1109/TIE.2019.2922937
- Jing, L., Tang, W., Wang, T., Ben, T., Qu, R.: Performance analysis of magnetically geared permanent magnet brushless motor for hybrid electric vehicles. IEEE Trans. Transp. Electr. 8(2), 2874-2883 (2022) https://doi.org/10.1109/TTE.2022.3151681
- Jing, L., Pan, Y., Wang, T., Qu, R., Cheng, P.: Transient analysis and verification of a magnetic gear integrated permanent magnet brushless machine with Halbach arrays. IEEE J. Emerg. Sel. Top. Power Electron. 10(2), 1881-1890 (2022) https://doi.org/10.1109/JESTPE.2021.3057665
- Peyrl, H., Papafotiou, G., Morari, M.: Model predictive torque control of a switched reluctance motor. In: 2009 IEEE international conference on industrial technology, pp. 1-6. (2009)
- Inderka, R.-B., Doncker, R.-W.-A.-A.: DITC-direct instantaneous torque control of switched reluctance drives. IEEE Trans. Ind. Appl. 39(4), 1046-1051 (2003) https://doi.org/10.1109/TIA.2003.814578
- Anuchin, A., Demidova, G.-L., Hao, C., et al.: Continuous control set model predictive control of a switch reluctance drive using lookup tables. Energies 13(13), 1-14 (2020)
- Anuchin. A., Podzorova, V., Hirz, M., et al.: Model predictive control with reduced integration step size of a switched reluctance drive. In: 2020 XI international conference on electrical power drive systems (ICEPDS). (2020)
- Cheng, H., Chen, H., Yang, Z., et al.: Braking torque closed-loop control of switched reluctance machines for electric vehicles. J. Power Electron. 15(2), 469-478 (2015) https://doi.org/10.6113/JPE.2015.15.2.469
- Bouiabadi, M.-M., Damaki, A.-A., Mousavi, S.-M., et al.: Design and analysis of E-core PM-assisted switched reluctance motor. IET Electr. Power Appl. 14(5), 859-864 (2020) https://doi.org/10.1049/iet-epa.2019.0767
- Di Barba, P., Mognaschi, M.-E., Wiak, S., et al.: Optimization and measurements of switched reluctance motors exploiting soft magnetic composite. Int. J. Appl. Electromagn. Mech. 57, S83-S93 (2018)
- Wu, J., Sun, X., Zhu, J.: Accurate torque modeling with PSObased recursive robust LSSVR for a segmented-rotor switched reluctance motor. China Electrotech. Soc. Trans. Electr. Mach. Syst. 4(2), 96-104 (2020) https://doi.org/10.30941/CESTEMS.2020.00014
- Zhang, J., Wang, H., Chen, L., et al.: Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer. IEEE Trans. Magn. 54(1), 1-13 (2017)
- El-Hay, E.-A., El-Hameed, M.-A., El-Fergany, A.-A.: Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor. Energy 163, 699-711 (2018) https://doi.org/10.1016/j.energy.2018.08.104
- Oksuztepe, E.: In-wheel switched reluctance motor design for electric vehicles by using a pareto-based multi-objective differential evolution algorithm. IEEE Trans. Veh. Technol. 66(6), 4706-4715 (2016) https://doi.org/10.1109/TVT.2016.2618119
- Sun, X., Feng, L., Zhu, Z., et al.: Optimal design of terminal sliding mode controller for direct torque control of SRMs. IEEE Trans. Transp. Electr. 8(1), 1445-1453 (2021)
- Mamede, A.-C.-F., Camacho, J.-R.: Evolutionary algorithms for optimization of 4/4 single phase switched reluctance machine. IEEE Lat. Am. Trans. 16(6), 1684-1691 (2018) https://doi.org/10.1109/TLA.2018.8444387
- Xue, X.D., Cheng, K.W.E., Ho, S.L.: Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives. IEEE Trans. Power Electron. 24(9), 2076-2090 (2009) https://doi.org/10.1109/TPEL.2009.2019581
- Xia, Z.-K., Bilgin, B., Nalakath, S., et al.: A new torque sharing function method for switched reluctance machines with lower current tracking error. IEEE Trans. Ind. Electron. 6(11), 10612-10622 (2021)
- Li, H., Bilgin, B., Emadi, A.: An improved torque sharing function for torque ripple reduction in switched reluctance machines. IEEE Trans. Power Electron. 34(2), 1635-1644 (2019) https://doi.org/10.1109/TPEL.2018.2835773
- Song, S., Fang, G., Hei, R., et al.: Torque ripple and efficiency online optimization of switched reluctance machine based on torque per ampere characteristics. IEEE Trans. Power Electron. 35(9), 9608-9616 (2020) https://doi.org/10.1109/TPEL.2020.2974662
- Feng, L., Sun, X., Tian, X., et al.: Direct torque control with variable flux for an SRM based on hybrid optimization algorithm. IEEE Trans. Power Electron. 37(6), 6688-6697 (2022) https://doi.org/10.1109/TPEL.2022.3145873