DOI QR코드

DOI QR Code

Joint prediction of internal and external temperatures for cylindrical Li-ion batteries

  • Yu, Suoqing (Hebei Vocational University of Technology and Engineering) ;
  • Zhang, Liping (Hebei Vocational University of Technology and Engineering) ;
  • Wang, Aobing (Hebei Vocational University of Technology and Engineering) ;
  • Ni, Liyong (Hebei Vocational University of Technology and Engineering)
  • Received : 2022.03.18
  • Accepted : 2022.07.11
  • Published : 2022.11.20

Abstract

Online battery temperature prediction is beneficial when it comes to taking effective heating and cooling actions in advance to realize better thermal management. First, this paper derives a simple thermal managing equation, i.e., a lightweight temperature prediction approach based on basic electrical and thermal laws from an equivalent circuit model. Then, to improve adaptability to complex conditions, some previously neglected thermal processes like heat conduction hysteresis and heat radiation are taken into consideration to achieve more realistic effects. In particular, the considerable reversible heat during alternating charging and discharging due to the electrochemical reactions of solid-liquid phase transitions is also modeled as a dependent variable in terms of real-time ohmic heat. A series of experiments is conducted under various loads and ambient conditions. The obtained results show that the proposed temperature prediction method can follow real temperature trajectories with an accumulated error of only 2.1 ℃ after an hour running.

Keywords

Acknowledgement

This work was supported in part by Xingtai Key Research and Development Plan, Self-raised Program (Grant No. 2020ZC120) and in part by Zhongshan City Social Welfare and Basic Research Project (Grant No. 2019B2019).

References

  1. Wang, Y., Zhang, X., Chen, Z.: Low temperature preheating techniques for Lithium-ion batteries: recent advances and future challenges. Appl. Energy 313, 118832 (2022) https://doi.org/10.1016/j.apenergy.2022.118832
  2. Ruffa, F., De Capua, C., Morello, R., Liu, Z.: Temperature sensing and evaluation of thermal effects on battery packs for automotive applications. IEEE Sens. J. 19(23), 11634-11645 (2019) https://doi.org/10.1109/JSEN.2019.2933901
  3. Wang, Y., Gao, Q., Wang, G.: A review on research status and key technologies of battery thermal management and its enhanced safety. Int. J. Energy Res. 42(13), 4008-4033 (2018) https://doi.org/10.1002/er.4158
  4. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., He, X.: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246-267 (2018) https://doi.org/10.1016/j.ensm.2017.05.013
  5. Kim, J., Oh, J., Lee, H.: Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 149, 192-212 (2019) https://doi.org/10.1016/j.applthermaleng.2018.12.020
  6. Huang, Y.H., Cheng, W.L., Zhao, R.: Thermal management of li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Convers. Manag. 182, 9-20 (2019) https://doi.org/10.1016/j.enconman.2018.12.064
  7. Wang, Q., Jiang, B., Li, B., Yan, Y.: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 64, 106-128 (2016) https://doi.org/10.1016/j.rser.2016.05.033
  8. Dey, S., Ayalew, B.: Real-time estimation of lithium-ion concentration in both electrodes of a lithium-ion battery cell utilizing electrochemical-thermal coupling. J. Dyn. Syst. Meas. Contr. 139(3), 031007 (2017) https://doi.org/10.1115/1.4034801
  9. Ai, W., Kraft, L., Sturm, J., Jossen, A., Wu, B.: Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithiumion pouch cells. J. Electrochem. Soc. 167(1), 013512 (2019)
  10. Li, D., Yang, L., Li, C.: Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications. Energy 214, 119057 (2021) https://doi.org/10.1016/j.energy.2020.119057
  11. Li, Y., Zhou, Z., Wu, W.T.: Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by minichannel cold plate. Appl. Therm. Eng. 147, 829-840 (2019) https://doi.org/10.1016/j.applthermaleng.2018.11.009
  12. Wang, D., Huang, H., Tang, Z., Zhang, Q., Yang, B., Zhang, B.: A lithium-ion battery electrochemical-thermal model for a wide temperature range application. Electrochim. Acta 362, 137118 (2020) https://doi.org/10.1016/j.electacta.2020.137118
  13. Chiew, J., Chin, C.S., Toh, W.D., Gao, Z., Jia, J., Zhang, C.Z.: A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery. Appl. Therm. Eng. 147, 450-463 (2019) https://doi.org/10.1016/j.applthermaleng.2018.10.108
  14. Hu, X., Jiang, H., Feng, F., Liu, B.: An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. Appl. Energy 257, 114019 (2020) https://doi.org/10.1016/j.apenergy.2019.114019
  15. Ye, Y., Shi, Y., Cai, N., Lee, J., He, X.: Electro-thermal modeling and experimental validation for lithium ion battery. J. Power Sources 199, 227-238 (2012) https://doi.org/10.1016/j.jpowsour.2011.10.027
  16. Xie, J., Li, Z., Jiao, J., Li, X.: Lumped-parameter temperature evolution model for cylindrical Li-ion batteries considering reversible heat and propagation delay. Measurement 173(3), 108567 (2020)
  17. Wei, L.C., Zhang, L.Y., Yang, X., Lu, Z., Meng, X.Z., Jin, L.W., Cao, F.: Experimental investigation on electro-thermal characteristics of the commercial Li-ion battery. IOP Conf. Ser. Earth Environ. Sci. 268(1), 012117 (2019) https://doi.org/10.1088/1755-1315/268/1/012117
  18. Lin, X., Perez, H.E., Mohan, S., Siegel, J.B., Stefanopoulou, A.G., Ding, Y., Castanier, M.P.: A lumped-parameter electro-thermal model for cylindrical batteries. J. Power Sources 257, 1-11 (2014) https://doi.org/10.1016/j.jpowsour.2014.01.097
  19. Lin, X., Perez, H.E., Siegel, J.B., Stefanopoulou, A.G., Li, Y., Anderson, R.D., Castanier, M.P.: Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring. IEEE Trans. Control Syst. Technol. 21(5), 1745-1755 (2012)
  20. Hu, X., Liu, W., Lin, X., Xie, Y.: A comparative study of controloriented thermal models for cylindrical Li-ion batteries. IEEE Trans. Transp. Electr. 5(4), 1237-1253 (2019) https://doi.org/10.1109/TTE.2019.2953606
  21. Wang, Y., Zhou, C., Zhao, G., Chen, Z.: A framework for battery internal temperature and state-of-charge estimation based on fractional-order thermoelectric model. Trans. Inst. Meas. Control 21, 24-28 (2022). https://doi.org/10.1177/01423312211067293
  22. Xie, J., Yao, T.: Quantified assessment of internal short-circuit state for 18650 batteries using an extreme learning machine based pseudo-distributed model. IEEE Trans. Transp. Electr. 7(3), 1303-1313 (2021) https://doi.org/10.1109/TTE.2021.3052579
  23. Ma, Y., Cui, Y., Mou, H., Gao, J., Chen, H.: Core temperature estimation of lithium-ion battery for EVs using Kalman fiter. Appl. Therm. Eng. 168, 114816 (2020) https://doi.org/10.1016/j.applthermaleng.2019.114816
  24. Gao, L., Liu, S., Dougal, R.A.: Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol. 25(3), 495-505 (2002) https://doi.org/10.1109/TCAPT.2002.803653
  25. He, H., Xiong, R., Peng, J.: Real-time estimation of battery stateof-charge with unscented kalman filter and rtos μcos-ii platform. Appl. Energy 162(15), 1410-1418 (2016) https://doi.org/10.1016/j.apenergy.2015.01.120
  26. Saw, L.H., Ye, Y., Tay, A.O.: Electro-thermal characterization of lithium iron phosphate cell with equivalent circuit modeling. Energy Convers. Manag. 87, 367-377 (2014) https://doi.org/10.1016/j.enconman.2014.07.011