DOI QR코드

DOI QR Code

Simplified DC voltage sensorless control of single-phase PFC converters in EV chargers

  • Received : 2021.10.02
  • Accepted : 2022.06.27
  • Published : 2022.11.20

Abstract

A novel method for controlling the output DC link voltage of a single-phase power factor correction (PFC) converter without using a DC voltage sensor for electric vehicle (EV) charging is proposed in this paper. The conventional boost PFC converter normally uses three expensive sensors, i.e., at the input voltage, the input current, and the output voltage. These sensors are used to regulate the power quality and maintain system stability. To reduce the cost and hardware complexity in the power converter, a DC voltage sensorless control using an estimator is proposed. This method utilizes the available input voltage and current signals to predict the output DC link voltage. This predicted output voltage contains an average DC component superimposed with a small ripple content at double the line frequency (2f). The proposed control method tracks the reference sinewave signal to maintain a high-power factor. The converter also exhibits very stable behavior under transient load variations. Simulated and experimental validation results obtained with a 1 kW prototype PFC converter are included.

Keywords

References

  1. Yilmaz, M., Krein, P.T.: Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28, 2151-2169 (2013) https://doi.org/10.1109/TPEL.2012.2212917
  2. Morrow, K., Darner, D., Francfort, J.: U.S. Department of energy vehicle technologies program-advanced vehicle testing activity-plug-in hybrid electric vehicle charging infrastructure review. (2008) https://doi.org/10.2172/946853.
  3. Gautam, D., Musavi, F., Edington, M., Eberle, W., Dunford, W.G.: An automotive on-board 3.3 kW battery charger for PHEV application, in 2011 IEEE Vehicle Power and Propulsion Conference (2011). https://doi.org/10.1109/VPPC.2011.6043192.
  4. Part 3.2: Limits-limits for harmonic current emissions, international standard, edition. 1, IEC 61000-3-2, 1998-2004.
  5. Koo K.-W., Kim, D.-H., Woo, D.G., Lee, B.-K.: Topology comparison for 6.6 kW on board charger: performance, efficiency, and selection guideline, in 2012 IEEE Vehicle Power and Propulsion Conference, IEEE, 2012. https://doi.org/10.1109/VPPC.2012.6422583
  6. Praneeth, A.V.J.S., Williamson, S.S.: A review of front-end AC-DC topologies in universal battery charger for electric transportation, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, 2018. https://doi.org/10.1109/ITEC.2018.8450186
  7. Chen, H.-C., Lin, C.-C., Liao, J.-Y.: Modified single-loop current sensor less control for single-phase boost-type SMR with distorted input voltage. IEEE Trans. Power Electron. 26, 1322-1328 (2011) https://doi.org/10.1109/TPEL.2010.2070079
  8. Noguchi, T., Tomiki, H., Kondo, S., Takahashi, I.: Direct power control of PWM converter without power source voltage sensors, in IAS'96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting (IEEE). https://doi.org/10.1109/IAS.1996.560196.
  9. Qi, W., Li, S., Tan, S.C., Hui, S.Y.: Design considerations for voltage sensor less control of a PFC single-phase rectifier without electrolytic capacitors. IEEE Trans. Ind. Electron. 67, 1878-1889 (2020) https://doi.org/10.1109/TIE.2019.2903744
  10. Gonzalez-Castano, C., Restrepo, C., Sanz, F., Chub, A., Giral, R.: DC voltage sensor less predictive control of a high-efficiency PFC single-phase rectifier based on the versatile buck-boost converter. Sensors 21, 5107 (2021) https://doi.org/10.3390/s21155107
  11. Chen, H.-C.: Single-loop current sensor less control for singlephase boost-type SMR. IEEE Trans. Power Electron. 24, 163-171 (2009) https://doi.org/10.1109/TPEL.2008.2006359
  12. Pahlevaninezhad, M., Das, P., Moschopoulos, G., Jain, P.: Sensor less control of a boost PFC AC/DC converter with a very fast transient response, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE. 2013. https://doi.org/10.1109/APEC.2013.6520233.
  13. Yip, S.C., Qiu, D.Y., Chung, H.S., Hui, S.Y.R.: A novel voltage sensor less control technique for a bidirectional ac/dc converter. IEEE Trans. Power Electron. 18(6), 1346-1355 (2003) https://doi.org/10.1109/TPEL.2003.818834
  14. Ohnishi, T., Hojo, M.: DC voltage sensorless single-phase PFC converter. IEEE Trans. Power Electron. 19, 404-410 (2004) https://doi.org/10.1109/TPEL.2003.823191
  15. Chen, H.-C.: Duty phase control for single-phase boost-type SMR. IEEE Trans. Power Electron. 23(4), 1927-1934 (2008). https://doi.org/10.1109/TPEL.2008.924627
  16. Nguyen, C.-L., Lee, H.-H., Chun, T.-W.: A simple grid-voltagesensorless control scheme for PFC boost converters. J. Power Electron. 14, 712-721 (2014) https://doi.org/10.6113/JPE.2014.14.4.712
  17. Lopez, F., Lopez-Martin, V.M., Azcondo, F.J., Corradini, L., Pigazo, A.: Current sensor less power factor correction with predictive controllers. IEEE J. Emerg. Select. Top. Power Electron. 7, 891-900 (2019) https://doi.org/10.1109/JESTPE.2019.2896768
  18. Wang, J., Maruta, H., Matsunaga, M., Kurokawa, F.: A novel predictive digital controlled sensor less PFC converter under the boundary conduction mode. J. Power Electron. 17, 1-10 (2017) https://doi.org/10.6113/JPE.2017.17.1.1
  19. Zhang, X., et al.: Sensorless control for DC-DC boost converter via generalized parameter estimation-based observer. Appl. Sci. 11, 7761 (2021) https://doi.org/10.3390/app11167761
  20. Lee, D.-C., Lim, D.-S.: AC voltage and current sensorless control of three-phase PWM rectifiers. IEEE Trans. Power Electron. 17, 883-890 (2002) https://doi.org/10.1109/TPEL.2002.805592
  21. Bhowmik, S., van Zyl, A., Spee, R., Enslin, J.H.R.: Sensorless current control for active rectifiers. IEEE Trans. Ind. Appl. 33, 765-773 (1997) https://doi.org/10.1109/28.585867
  22. Chen, H.-C., Lin, C.-C., Liao, J.-Y.: Modified single-loop current sensorless control for single-phase boost-type SMR With distorted input voltage. IEEE Trans. Power Electron. 26, 1322-1328 (2011) https://doi.org/10.1109/TPEL.2010.2070079
  23. Ohnishi, T., Fujii, K.: Line voltage sensorless three phase PWM converter by tracking control of operating frequency, in Proceedings of Power Conversion Conference-PCC'97 (IEEE). https://doi.org/10.1109/PCCON.1997.645620.
  24. Noguchi, T., Tomiki, H., Kondo, S., Takahashi, I.: Direct power control of PWM converter without power-source voltage sensors. IEEE Trans. Ind. Appl. 34, 473-479 (1998) https://doi.org/10.1109/28.673716