DOI QR코드

DOI QR Code

Effect of core shape on debonding failure of composite sandwich panels with foam-filled corrugated core

  • Received : 2021.10.06
  • Accepted : 2022.11.03
  • Published : 2022.11.10

Abstract

One of the major failure modes in composite sandwich structures is the separation between skins and core. In this study, the effect of employing foam filled composite corrugated core on the skin/core debonding (resistance to separation between skin and core) is investigated both experimentally and numerically. To this aim, triangular corrugated core specimens are manufactured and compared with reference specimens only made of PVC foam core in terms of skin/core debonding under bending loading. The corrugated composite laminates are fabricated using the hand layup method. Also, the Vacuumed Infusion Process (VIP) is employed to join the skins to the core with greater quality. Utilizing an End Notched Shear (ENS) fixture, three point bending tests are performed on the manufactured sandwich composite panels. The results reveal that the resistance to separation capacity and flexural stiffness of sandwich composite has been increased about 170% and 76%, respectively by using a triangular corrugated core. The Cohesive Zone Model (CZM) with appropriate cohesive law in ABAQUS finite element software is used to model the progressive face/core interfaces debonding the difference between experimental and numerical results in predicting the maximum born load before the skin/core separation is about 6 % in simple core specimens and 3% in triangular corrugated core specimens.

Keywords

References

  1. Adams, D., Nelson, J. and Bluth, Z. (2012), "Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites", Proceedings of the 2012 Federal Aviation Administration JAMS Technical Review Conference, Baltimore, MD, April 5, 2012, 25.
  2. Airex C70/3A Composites Core Materials (2011). 3A Composites Core Materials. 1-3. https://www.3accorematerials.com/uploads/documents/TDSAIR EX-C70-E-04.2020.pdf
  3. Anderson, T.L. (2016), "Fracture mechanics: Fundamentals and applications Surjya Kumar Maiti", MRS Bulletin, 41(08), 635-636. https://doi.org/10.1557/mrs.2016.179.
  4. Aviles, F. and Carlsson, L.A. (2006). Experimental study of debonded sandwich panels under compressive loading. Journal of Sandwich Structures and Materials, 8(1), 7-31. https://doi.org/10.1177/1099636206054996.
  5. Bahabadi, H.M., Farrokhabadi, A. and Rahimi, G.H. (2020), "Investigation of debonding growth between composite skins and corrugated foam-composite core in sandwich panels under bending loading", Eng. Fracture Mech., 230, 106987. https://doi.org/10.1016/J.ENGFRACMECH.2020.106987.
  6. Camanho, P.P., Davila, C.G. and De Moura, M.F. (2003), "Numerical simulation of mixed-mode progressive delamination in composite materials", J. Compos. Mater., 37(16), 1415-1438. https://doi.org/10.1177/0021998303034505.
  7. Caner, F.C. and Bazant, Z.P. (2009), "Size effect on strength of laminate-foam sandwich plates: Finite element analysis with interface fracture", Compos. Part B: Eng., 40(5), 337-348. https://doi.org/10.1016/J.COMPOSITESB.2009.03.005.
  8. Chakraborty, S., Reddy, S. and Subramaniam, K.V.L. (2021), "Experimental evaluation and analysis of flexural response of sandwich beam panels with an expanded polystyrene core", Structures, 33, 3798-3809. https://doi.org/10.1016/j.istruc.2021.06.088.
  9. Fereidoon, A., Andalib, M. and Hemmatian, H. (2015), "Bending analysis of curved sandwich beams with functionally graded core", Mech. Adv. Mater. Struct., 22(7), 564-577. https://doi.org/10.1080/15376494.2013.828815.
  10. Floros, I.S., Tserpes, K.I. and Lobel, T. (2015), "Mode-I, mode-II and mixed-mode I+II fracture behavior of composite bonded joints: Experimental characterization and numerical simulation", Compos. Part B: Eng., 78, 459-468. https://doi.org/10.1016/j.compositesb.2015.04.006.
  11. Ganapathi, S.C., Peter, J.A., Lakshmanan, N. and Iyer, N.R. (2016), "Behavior of light weight sandwich panels under out of plane bending loading", Steel Compos. Struct., 21(4), 775-789. https://doi.org/10.12989/scs.2016.21.4.775.
  12. Han, B., Qin, K.K., Yu, B., Zhang, Q.C., Chen, C.Q. and Lu, T.J. (2015), "Design optimization of foam-reinforced corrugated sandwich beams", Compos. Struct., 130, 51-62. https://doi.org/10.1016/j.compstruct.2015.04.022.
  13. Hassanpour Roudbeneh, F., Liaghat, G., Sabouri, H. and Hadavinia, H. (2020), "Experimental investigation of quasistatic penetration tests on honeycomb sandwich panels filled with polymer foam", Mech. Adv. Mater. Struct., 27(21), 1803-1815. https://doi.org/10.1080/15376494.2018.1525628.
  14. Jadhav, P. and Mantena, P.R. (2007), "Parametric optimization of grid-stiffened composite panels for maximizing their performance under transverse loading", Compos. Struct., 77(3), 353-363. https://doi.org/10.1016/j.compstruct.2005.07.015.
  15. Kamareh, F., Farrokhabadi, A. and Rahimi, G. (2018), "Experimental and numerical investigation of skin/lattice stiffener debonding growth in composite panels under bending loading", Eng. Fracture Mech., 190, 471-490. https://doi.org/10.1016/j.engfracmech.2017.12.043.
  16. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/http://dx.doi.org/10.12989/scs.2020.34.2.279.
  17. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.
  18. Kilicaslan, C., Guden, M., Odaci, I.K. and Tasdemirci, A. (2014), "Experimental and numerical studies on the quasi-static and dynamic crushing responses of multi-layer trapezoidal aluminum corrugated sandwiches", Thin-Walled Struct., 78, 70-78. https://doi.org/10.1016/J.TWS.2014.01.017.
  19. Kozak, J. (2009), "Selected problems on application of steel sandwich panels to marine structures", Polish Maritime Res., 16(4), 9-15. https://doi.org/10.2478/v10012-008-0050-4.
  20. Mahbod, M. and Asgari, M. (2018), "Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings", Thin-Walled Struct., 129, 58-73. https://doi.org/10.1016/j.tws.2018.03.023.
  21. Malekinejad Bahabadi, H., Rahimi, G.H. and Farrokhabadi, A. (2016), "Numerical and experimental investigation of skin/core debonding in composite sandwich structures with corrugated core under bending loading", Mdrsjrns, 16(6), 52-62. http://mme.modares.ac.ir/article-15-2529-en.html.
  22. Malekinejad, H., Farrokhabadi, A. and Khatibi, M.M. (2018), "The influence of skin / core debonding effects on the natural frequencies of composite sandwich structures using experimental and numerica", J. Sci. Technol. Compos., 5(1), 91-98.
  23. Meng, F., Chen, C., Hu, D. and Song, J. (2017), "Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling", J. Mech. Phys. Solids, 109, 241-251. https://doi.org/10.1016/j.jmps.2017.09.003.
  24. Mostafa, A., Shankar, K. and Morozov, E.V. (2013), "Insight into the shear behaviour of composite sandwich panels with foam core", Mater. Des., 50, 92-101. https://doi.org/10.1016/j.matdes.2013.03.016.
  25. Petrone, G., D'Alessandro, V., Franco, F., Mace, B. and De Rosa, S. (2014), "Modal characterisation of recyclable foam sandwich panels", Compos. Struct., 113(1), 362-368. https://doi.org/10.1016/J.COMPSTRUCT.2014.03.026.
  26. Pitta, S., Rojas Gregorio, J.I., Roure Fernandez, F., Crespo Artiaga, D. and Wahab, M.A. (2022), "An experimental and numerical investigation on fatigue of composite and metal aircraft structures", Steel Compos. Struct., 43(1), 19-30. https://doi.org/10.12989/scs.2022.43.1.019.
  27. Saeid, A.A. and Donaldson, S.L. (2016), "Experimental and finite element evaluations of debonding in composite sandwich structure with core thickness variations", Adv. Mech. Eng., 8(9), 1-18. https://doi.org/10.1177/1687814016667418.
  28. Saghafi, H., Ghaffarian, S.R., Salimi-Majd, D. and Saghafi, H.A. (2017), "Investigation of interleaf sequence effects on impact delamination of nano-modified woven composite laminates using cohesive zone model", Compos. Struct., 166, 49-56. https://doi.org/10.1016/j.compstruct.2017.01.035.
  29. Srivastava, V.K., Gries, T., Quadflieg, T., Mohr, B., Kolloch, M. and Kumar, P. (2018), "Fracture behavior of adhesively bonded carbon fabric composite plates with nano materials filled polymer matrix under DCB, ENF and SLS tests", Eng. Fracture Mech., 202, 275-287. https://doi.org/10.1016/j.engfracmech.2018.09.030.
  30. Thomson, R.S., Khan, M.Z.S. and Mouritz, A.P. (1998), "Shear properties of a sandwich composite containing defects", Compos. Struct., 42(2), 107-118. https://doi.org/https://doi.org/10.1016/S0263-8223(98)00058-0.
  31. Vadakke, V. and Carlsson, L.A. (2004), "Experimental investigation of compression failure of sandwich specimens with face/core debond", Compos. Part B: Eng., 35, 583-590. https://doi.org/10.1016/j.compositesb.2003.10.004.
  32. Wang, H., Ramakrishnan, K.R. and Shankar, K. (2016), "Experimental study of the medium velocity impact response of sandwich panels with different cores", Mater. Des., 99, 68-82. https://doi.org/10.1016/j.matdes.2016.03.048.
  33. Wang, R.G., Zhang, L., Zhang, J., Liu, W.B. and He, X.D. (2010), "Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method", Comput. Mater. Sci., 50(1), 20-31. https://doi.org/10.1016/j.commatsci.2010.07.003.
  34. Wisnom, M.R. (2010), "Modelling discrete failures in composites with interface elements", Compos. Part A: Appl. Sci. Manufact., 41(7), 795-805. https://doi.org/10.1016/j.compositesa.2010.02.011.
  35. www.corematerials.acomposites.com (2021), Retrieved September 24, http://www.corematerials.3acomposites.com.
  36. Xiao, W., Yan, C., Tian, W., Tian, W. and Song, X. (2018), "Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich", Steel Compos. Struct., 29(3), 301-308. https://doi.org/10.12989/scs.2018.29.3.301.
  37. Xie, Z., Yan, Q. and Li, X. (2014), "Investigation on low velocity impact on a foam core composite sandwich panel", Steel Compos. Struct., 17(2), 159-172. https://doi.org/10.12989/scs.2014.17.2.159.
  38. Xin, Y., Yan, H., Cheng, S. and Li, H. (2021), "Drop weight impact tests on composite sandwich panel of aluminum foam and epoxy resin", Mech. Adv. Mater. Struct., 28(4), 343-356. https://doi.org/10.1080/15376494.2018.1564853.
  39. Zhang, J., Supernak, P., Mueller-Alander, S. and Wang, C.H. (2013), "Improving the bending strength and energy absorption of corrugated sandwich composite structure", Mater. Des., 52, 767-773. https://doi.org/https://doi.org/10.1016/j.matdes.2013.05.018.