DOI QR코드

DOI QR Code

아두이노 활용 의복압 측정기 제작 및 신뢰도 검증

Reliability Verification of the Clothing Pressure Meter Utilizing the Arduino Board

  • 김남임 (창원대학교 생활과학연구소) ;
  • 박진아 (창원대학교 의류학과)
  • Kim, Nam Yim (Research Institute of Human Ecology, Changwon National University) ;
  • Park, Gin Ah (Dept. of Clothing & Textiles, Changwon National University)
  • 투고 : 2021.10.07
  • 심사 : 2022.08.02
  • 발행 : 2022.10.31

초록

This study aimed to develop an Arduino-based garment pressure device (APD) on the basis of using Single-Tact sensor by suggesting the reliable clothing pressure range and coefficient of selected sensors through the APD calibration process. Once the APD was validated, the pressure of the experimental men's lower body compression wears was measured using the APD and was compared to the pressure measured using the existing air-pack type pressure meter. The subjects were one mannequin and eight men in their 20's, and the trial compression wears were calf sleeves and pants. Clothing pressures were measured in hip, mid-thigh, calf, and ankle. In terms of the 99% confidence level, the experimental clothing pressure measured at the designated measuring points using the APD was considered identical to the one measured using an existing clothing pressure meter. Therefore, on the basis of the experiment results, this study demonstrated that the APD is as reliable as the existing clothing pressure meter within the pressure ranges of 0.54-16.79 kPa and 0.18-25.47 kPa as provided by the SingleTact sensor supplier's data on the basis of using an external ADC (Analog to Digital Converter) module.

키워드

과제정보

본 논문은 한국연구재단의 지원으로 수행된 연구결과의 일부임(No. NRF-2019R1I1A1A01063314). 본 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A5C2A03083556).

참고문헌

  1. Barhoumi, H., Marzougui, S., & Abdessalem, S. B. (2022). A novel design approach and ergonomic evaluation of Class I compression legging. International Journal of Clothing Science and Technology, 34(2), 273-284. doi:10.1108/IJCST11-2020-0179
  2. Cho, S.-H. (2015). Comparison of medical compression garments by manufacturing country. Journal of the Korea Fashion & Costume Design Association, 17(4), 31-39.
  3. Do, W.-H., & Kim, N.-S. (2013). The comparison on the compression measurement value of medical compression stockings. Journal of the Korean Society of Clothing and Textiles, 37(8), 1060-1074. doi:10.5850/JKSCT.2013.37.8.1060
  4. French, D. N., Thompson, K. G., Garland, S. W., Barnes, C. A., Portas, M. D., Hood, P. E., & Wilkes, G. (2008). The effects of contrast bathing and compression therapy on muscular performance. Medicine and Science in Sports and Exercise, 40(7), 1297-1306. doi:10.1249/mss.0b013e31816b10d5
  5. Gogate, U., & Bakal, J. (2018). Healthcare monitoring system based on wireless sensor network for cardiac patients. Biomedical & Pharmacology Journal, 11(3), 1681-1688. doi: 10.13005/bpj/1537
  6. Gong, Y.-Q., & Mei, S.-Q. (2019). Stretch elasticity and garment pressure of shaping-underwear fabric. Proceedings of IOP Conference Series: Materials Science and Engineering, Russia, 684:012010. doi:10.1088/1757-899X/684/1/012010
  7. Jang, E., & Cho, G. (2019). The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. doi: 10.5805/SFTI.2019.21.6.697
  8. Kim, N. Y., & Lee, H. (2019). Influence of clothing pressure on blood flow and subjective sensibility of commercial sports compression wear. Fashion & Textile Research Journal, 21(4), 459-467. doi:10.5805/SFTI.2019.21.4.459
  9. Krishnamurthi, K., Thapa, S., Kothari, L., & Prakash, A. (2015). Arduino based weather monitoring system. International Journal of Engineering Research and General Science, 3(2), 452-458.
  10. Lee, H., Kim, K., & Lee, Y. (2020). Effect of compression pants on EEG spectrum. International Journal of Clothing Science and Technology, 32(2), 197-207. doi:10.1108/IJCST-0 3-2019-0031
  11. Li, L. I., Au, W. M., Li, Y., Wan, K. M., Chung, W. Y., & Wong, K. S. (2009). A novel design method for an intelligent clothing based on garment design and knitting technology. Textile Research Journal, 79(18), 1670-1679. doi:10.1177/0040517508096219
  12. Lin, Y., Choi, K.-F., Luximon, A., Yao, L., Hu, J. Y., & Li, Y. (2011). Finite element modeling of male leg and sportswear: contact pressure and clothing deformation. Textile Research Journal, 81(14), 1470-1476. doi:10.1177/0040517510395997
  13. Liu, H., & Cheng, L. (2021). Study on the wearing performance of compression stockings and its influence on the blood flow velocity of lower limbs. Proceedings of E3S Web of Conferences, China, 237:04037. doi:10.1051/e3sconf/202123704037
  14. Liu, R., Kwok, Y.-L., Li, Y., & Lao, T.-T. (2010). Fabric mechanical-surface properties of compression hosiery and their effects on skin pressure magnitudes when worn. FIBRES & TEXTILES in Eastern Europe, 18(2), 91-97.
  15. Liu, R., Kwok, Y. L., Li, Y., Lao, T. T. H., Zhang, X., & Dai, X. Q. (2005). Objective evaluation of skin pressure distribution of graduated elastic compression stockings. Dermatologic Surgery, 31(6), 615-624. doi:10.1111/j.1524-4725.2005.31603
  16. Mahmood, S. N., & Hasan, F. F. (2017). Design of weather monitoring system using Arduino based database implementation. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 4(4), 7109-7117.
  17. Mallick, B., & Patro, A. K. (2016). Heart rate monitoring system using finger tip through Arduino and processing software. International Journal of Science, Engineering and Technology Research (IJSETR), 5(1), 84-89.
  18. McLaren, J., Helmer, R. J. N., Horne, S. L., & Blanchonette, I. (2010). Preliminary development of a wearable device for dynamic pressure measurement in garments. Procedia Engineering, 2(2), 3041-3046. doi:10.1016/j.proeng.2010.04.108
  19. Mitsuno, T., & Yanagisawa, A. K. (2022). Comfortable pressure feeling and clothing pressure on abdomen. International Journal of Clothing Science and Technology, 34(1), 110-118. doi:10.1108/IJCST-12-2017-0194
  20. Partsch, H. (2012). Compression therapy: clinical and experimental evidence. Annals of Vascular Diseases, 5(4), 416-422. doi:10.3400/avd.ra.12.00068
  21. Parmar, S., Khodasevych, I., & Troynikov, O. (2017). Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders. Sensors, 17(8):1923. doi:10.3390/s17081923
  22. Schoepp, K. R., Dawson, M. R., Schofield, J. S., Carey, J. P., & Hebert, J. S. (2018). Design and integration of an inexpensive wearable mechanotactile feedback system for myoelectric prostheses. IEEE Journal of Translational Engineering in Health and Medicine, 6:2100711. doi:10.1109/JTEHM.2018.2866105
  23. Shen, Y., Sui, J., & Xie, H. (2021). Effects of compression socks on muscle recovery after induced fatigue. AATCC Journal of Research, 8(2_suppl), 68-71. doi:10.14504/ajr.8.S2.14
  24. SingleTact. (2016). Miniature force sensors [PDF document]. SingleTact. Retrieved from https://www.singletact.com/SingleTact_Datasheet.pdf
  25. SingleTact. (2022). Calibrated sensors. SingleTact. Retrieved from https://www.singletact.com/micro-force-sensors/calibrated-sensors
  26. Song, K. H., Kim, J. H., & Park, S. H. (2002). Development and application of measurement system for clothing pressure. Korean Journal of Human Ecology, 11(3), 307-319.
  27. Sugathan, A., Roy, G. G., Kirthyvijay, G. J., & Thomson, J. (2013). Application of arduino based platform for wearable health monitoring system. Proceedings of 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), India, 1-5. doi:10.1109/CATCON.2013.6737464
  28. Tan, E. T., Halim, Z. A., & Kok, V. (2015). Early development of embedded fatigue monitoring system based on heart rate. ARPN Journal of Engineering and Applied Sciences, 10(22), 17197-17201.
  29. Tang, K. P. M., Yick, K. L., Li, P. L., Yip, J., Or, K. H., & Chau, K. H. (2020). Effect of contacting surface on the performance of thin-film force and pressure sensors. Sensors, 20(23):6863. doi:10.3390/s20236863
  30. Ungson, Y., Reyna, M. A., & Bravo-Zanoguera, M. E. (2014). Development of an ambulatory ECG system based on Arduino and mobile telephony for wireless transmission. Proceedings of 2014 Pan American Health Care Exchanges (PAHCE), Brazil, 1-5. doi:10.1109/PAHCE.2014.6849623
  31. Wang, Y., Liu, Y., Luo, S., Chen, C., & Jin, L. (2018). The pressure comfort sensation of female's body parts caused by compression garment. In T. Ahram & C. Falcao (Eds.), Advances in human factors in wearable technologies and game design: Proceedings of the AHFE 2017 International Conference on Advances in Human Factors and Wearable Technologies, July 17-21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA (pp. 94-104). Cham: Springer.