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Noninvasive stimulation of the nervous system for treating chronic neuropathic pain has 
received attention because of its tolerability and relative efficacy. Repetitive transcranial 
magnetic stimulation (rTMS) is a representative method of noninvasive brain stimulation. Evi-
dence-based guidelines on therapeutic use of rTMS have been proposed recently for several 
neurological diseases. These guidelines recommend treating neuropathic pain by applying 
high-frequency (≥ 5 Hz) rTMS to the primary motor cortex contralateral to the painful side. 
This review summarizes the mechanisms and guidelines of rTMS for treating neuropathic pain, 
and proposes directions for future research. 
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INTRODUCTION

Neuropathic pain is defined as “pain caused by a lesion or disease of the somatosensory 
nervous system.”1 It is one of the most-common causes of chronic pain, with approximate-
ly 40% of patients with chronic pain suffering from neuropathic pain.2 Pharmacological 
treatments for neuropathic pain show limited efficacy, with no medicine available that can 
completely relieve neuropathic pain.3 Several guidelines recommend nonpharmacolog-
ical treatments for neuropathic pain, including noninvasive brain stimulation, spinal cord 
stimulation, radiofrequency ablation, and nerve blocking.4,5 There are two main stream of 
noninvasive brain stimulation: (1) repetitive transcranial magnetic stimulation (rTMS) and  
(2) transcranial direct-current stimulation.6 Evidence-based guidelines on the therapeutic 
use of rTMS in several neurological diseases have been proposed recently.7 Here we re-
view the basic technique and mechanism of rTMS and discuss guidelines and future direc-
tions of rTMS in neuropathic pain treatment.
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BASIC TECHNIQUE AND MECHANISM OF 
rTMS

Basic technique of rTMS
Transcranial magnetic stimulation (TMS) is based on Fara-
day’s principle of electromagnetic induction. A TMS coil is 
placed on the scalp, and current is passed through it that 
generates a rapidly fluctuating magnetic field that in turn 
induces electrical current flow toward the intracranial space. 
Activities of the cortical neurons are modulated by the elec-
trical field produced by the magnetic field.8 There are several 
configurations of TMS coils, with circular and figure-of-eight 
coils being the two main models. Circular coils are the sim-
plest, and they provide diffuse stimulation. In contrast, fig-
ure-of-eight or ‘butterfly’ coils are the most commonly used 
because they can induce highly focused electrical fields.

The five parameters of location, focality, frequency, pulse 
intensity, and duration should be considered when con-
ducting TMS.8 There are several ways to ensure that the 
correct location is stimulated. When the eloquent cortex is 
stimulated, the induced response is expected to be based 
on functional mapping. A single pulse of TMS will induce 
muscle activation by stimulating the primary motor cortex 
(M1). Perception of a phosphene is expected if the prima-
ry visual cortex (V1) is stimulated. Stereotactic navigation 
techniques been recently become popular for stimulating 
more-complex cortical areas, such as the dorsolateral pre-
frontal cortex (DLPFC). The depth and focality of stimulation 
are critical functional parameters, and they are interlinked, 
with an increased depth resulting in reduced focality. The 
pulse intensity is correlated with the depth of stimulation, 
with a larger pulse intensity increasing the depth but reduc-
ing the focality.

TMS can modulate brain activities in various ways depend-
ing on the stimulation pattern and frequency. Single-pulse 
TMS can induce an immediate response, but it exerts no 
sustained effect on the stimulated cortex. This modality is 
normally used to record motor evoked potentials and to 
determine the motor threshold (MT).8 Paired-pulse TMS ap-
plies two pulses in rapid succession, and is used in basic and 
clinical neurophysiological research to measure inhibitory 
and excitatory central mechanisms.6,9 In contrast, rTMS can 
induce long-lasting neuroplastic changes, and is used for 
treating several neurological diseases. Low-frequency (1 Hz) 

stimulation has an inhibitory effect, while high-frequency  
(≥ 5 Hz) stimulation has an excitatory effect on the underly-
ing cortex. Theta-burst stimulation (TBS) is another form of 
rTMS, which also has two protocols: (1) continuous TBS with 
an inhibitory effect and (2) intermittent TBS with an excitato-
ry effect.10,11 TBS should induce longer lasting neuroplastici-
ty compared with rTMS.8 

Mechanism of motor cortex stimulation in neuropathic 
pain treatment
The mechanism underlying the effects of applying rTMS 
to M1 in treating neuropathic pain is unclear. The motor 
cortex has connections to the thalamus,12 and motor cortex 
stimulation can inhibit thalamic activity that then indirectly 
activates the descending pain inhibitory pathway.13 These 
connections might explain the analgesic effect of rTMS on 
M1 against neuropathic pain.14 Another postulated mecha-
nism of action is endogenous opioid release induced by M1 
stimulation.14 A positron-emission tomography (PET) study 
evaluating the activity of opioid receptors found decreased 
signals after 7 months of direct electrical stimulation to M1, 
suggesting that endogenous opioids released by M1 stim-
ulation could occupy opioid receptors.15 A recent PET study 
also demonstrated significant release of endogenous opi-
oids within a hemispheric brain network by applying single 
session of 10-Hz rTMS to M1 in 10 healthy subjects.16

rTMS FOR NEUROPATHIC PAIN 

Evidence-based protocol of rTMS in neuropathic pain
The International Federation of Clinical Neurophysiology and 
the European Federation of Neurological Societies reached 
a consensus on the therapeutic use of rTMS and reported 
evidence-based guidelines in 2014.17 They subsequently 
updated the recommendations taking into account all 
publications related to rTMS, including data prior to 2014 as 
well as currently reviewed literature until the end of 2018.7 
They recommended level A evidence (definite efficacy) for 
high-frequency rTMS of M1 contralateral to the painful side 
for neuropathic pain. High-frequency rTMS of the left M1 or 
DLPFC for improving the quality of life or pain was relevant 
for level B evidence (probable efficacy).7 

Since the early report on the effects of M1 stimulation by 
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Tsubokawa et al.,18 many studies have been performed to 
define the appropriate rTMS parameters for treating neuro-
pathic pain. Most studies demonstrating good efficacy of 
rTMS against neuropathic pain have applied similar rTMS 
parameters: high-frequency stimulation (10-20 Hz), 1,600 
to 3,000 stimulations per session, intertrain interval of 10 to 
84 seconds, intensity of 70% to 90% of the MT, and using a 
figure-of-eight coil (Table 1). The most significant results for 
the good efficacy of rTMS against neuropathic pain were 
obtained following M1 stimulation. 

Cortical target of rTMS
The most-effective M1 location at which to apply stimula-
tion remains to be defined. Andre-Obadia et al.19 reported 
that rTMS was more efficacious when it is delivered over the 
hand motor area than the face area regardless of the pain 
location (hand or face). However, Ayache et al.20 showed 
that anatomical targeting using magnetic-resonance-im-
aging-guided navigation may provide a better effect than 

the motor hotspot. That study included patients with neu-
ropathic pain at various locations, which is more likely to 
reflect real situations. 

The second-most-studied cortical target for rTMS in 
chronic pain has been the DLPFC. Unfortunately, rTMS of 
the DLPFC showed a very weak effect on chronic pain in a 
recent randomized multicenter sham-controlled trial.21 Pa-
rieto-opercular cortex stimulation for treating orofacial pain 
produced significantly better analgesia than stimulation 
of the primary sensorimotor cortex or sham.22,23 However, 
these studies were based on the short-term effect of a single 
rTMS session, and so long-term results need to be investi-
gated further. Stimulating other cortical areas such as insu-
lar cortex24 or middle cingulate cortex25 failed to improve 
chronic neuropathic pain.

Safety of rTMS
rTMS is relatively safe. The most-common adverse effects of 
rTMS are headache, pain at the site of stimulation, increased 

Table 1. Stimulation parameters of rTMS for treating neuropathic pain 

Study
Frequency 

(Hz)
Motor 

threshold (%)
Number 
of pulses

Number 
of session

Pain control outcome

André-Obadia et al.33 (2006) 1 or 20 90 1,600 2 20 Hz provided significant relief, whereas 1 Hz increased pain

André-Obadia et al.34 (2014) 20 90 1,600 1 Trial of rTMS for epidural stimulation, pain significantly reduced 
vs. sham

Andre-Obadia et al.19 (2018) 20 90 1,600 2 Stimulation over hand area provides significant relief vs.  
stimulation over face area

Attal et al.35 (2016) 10 80 3,000 6 rTMS provided significant pain reduction vs. tDCS

Attal et al.21 (2021) 10 80 3,000 15 M1-rTMS reduces peripheral neuropathic pain vs. sham but, not 
DLPFC-rTMS reduced peripheral neuropathic pain vs. sham

Khedr et al.36 (2015) 20 80 3,000 10 Significant decrease in pain immediately and at day 15 after 
stimulation but not at 1 month: 80-87% responders (> 30% 
pain relief)

Lefaucheur et al.37 (2011) 10 90 2,000 1 Response to rTMS correlates with response to epidural  
stimulation

Mori et al.38 (2022) 5 or 10 90 500 or 
2,000

1 The highest stimulation settings group reported best pain  
reduction vs. lower settings

Ma et al.39 (2015) 10 80 1,500 10 Reduction of pain score up to 3 months after the last session: 
50% responders (> 50% pain relief)

Nurmikko et al.40 (2016) 10 90 2,000 5 Reduction of pain score vs. control 1 week after the lase  
session: 30% responders (> 30% pain relief)

rTMS, repetitive transcranial magnetic stimulation; tDCS, transcranial direct current stimulation; M1, primary motor cortex; DLPFC, dorsolateral prefrontal 
cortex.
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bodily pain or paresthesia, fatigue, sleep disorders, nausea, 
anxiety/irritability/cognitive impairment, and muscle sensa-
tions during the stimulation.21 No serious treatment-related 
adverse effect has been reported. Serious adverse events 
such as seizures are rare, especially when utilizing focused 
coils and an intensity of 70% to 80% of MT. 

FURTHER PERSPECTIVES

Long-term effects of rTMS
Long-term effects of rTMS for maintenance treatment have 
not been clearly elucidated. The cumulative effect of rTMS 
sessions over the long term has been reported for various 
protocols of maintenance treatment. However, further study 
is needed to clarify the long-term effects of rTMS for mainte-
nance treatment.26,27

New cortical targets of rTMS
Identifying new stimulation targets for rTMS would also be 
useful. The posterior insular cortex and anterior cingulate 
cortex are involved in central integration of the sensory-dis-
criminative aspect of pain processing.28 Deep brain stimu-
lation of the posterior insular can lead to antinociceptive ef-
fects dependent on endogenous opioids and cannabinoids 
in experimental models of peripheral neuropathic pain.29,30 

Theta-burst stimulation
Regarding the mechanism of action, TBS is a better method 
than high-frequency rTMS for inducing long-lasting effects 
with a lower stimulation intensity. However, published data 
on TBS have only been related to experimental or acute 
provoked pain,31,32 and so further studies of TBS for chronic 
neuropathic pain treatment are needed.  

CONCLUSION

Noninvasive brain stimulation has received attention for 
treating neuropathic pain because of its noninvasiveness 
and tolerability. High-frequency rTMS of M1 is a promis-
ing treatment methodology for chronic neuropathic pain. 
However, more data are needed on other cortical targets for 
stimulation and the effects of various stimulation patterns 

on neuropathic pain with diverse causes. 
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