Acknowledgement
This study was supported by Hunan Provincial Natural Science Foundation of China (2022JJ30352), Innovative Research Groups of the Natural Science Foundation of Hunan Province (2022CX75), and the National Natural Science Foundation of China (31872851).
References
- Tolli J, King GM. 2005. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl. Environ. Microbiol. 71: 8411-8418. https://doi.org/10.1128/AEM.71.12.8411-8418.2005
- Videmsek U, Hagn A, Suhadolc M, Radl V, Knicker H, Schloter M. 2009. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microb. Ecol. 58: 1-9.
- Yousuf B, Sanadhya P, Keshri J, Jha B. 2012. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol. 12: 150-164. https://doi.org/10.1186/1471-2180-12-150
- Dong Z, Layzell DB. 2001. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant Soil 229: 1-12. https://doi.org/10.1023/A:1004810017490
- Stein S, Selesi D, Schilling R, Pattis I, Schmid M, Hartmann A. 2005. Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biol. Biochem. 37: 1938-1945. https://doi.org/10.1016/j.soilbio.2005.02.035
- Yuan H, Ge T, Chen C, O'Donnell AG, Wu JS. 2012. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78: 2328-2336. https://doi.org/10.1128/AEM.06881-11
- Yuan H, Ge T, Zou S, Wu X, Liu S, Zhou P. 2013. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large subunit gene abundance in soils. Biol. Fertil Soils 49: 609-616. https://doi.org/10.1007/s00374-012-0750-x
- Zhao K, Kong WD, Wang F, Long XE, Guo CY, Yue LY. 2018. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biol. Biochem. 127: 230-238. https://doi.org/10.1016/j.soilbio.2018.09.034
- Wu X, Ge T, Wang W, Yuan H, Carl-Eric W, Zhu Z. 2015. Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil. Front. Microbiol. 6: 379.
- Yuan HZ, Ge TD, Wu XH, Liu SL, Tong CL, Qin HL. 2012. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl. Microbiol. Biotechnol. 95: 1061-1071. https://doi.org/10.1007/s00253-011-3760-y
- Sombrero A, Benito A. 2010. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Tillage Res. 107: 64-70. https://doi.org/10.1016/j.still.2010.02.009
- Chen Z, Luo XQ, Hu RG, Wu MN, Wu JS, Wei WX. 2010. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 60: 850-861. https://doi.org/10.1007/s00248-010-9700-z
- Fuchs G. 2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65: 631-658. https://doi.org/10.1146/annurev-micro-090110-102801
- Alfreider A, Schirmer M, Vogt C. 2012. Diversity and expression of different forms of RubisCO genes in polluted groundwater under different redox conditions. FEMS Microbiol. Ecol. 79: 649-660. https://doi.org/10.1111/j.1574-6941.2011.01246.x
- Li PP, Chen WJ, Han YL, Wang DC, Zhang YT, Wu CF. 2020. Effects of straw and its biochar applications on the abundance and community structure of CO2-fixing bacteria in a sandy agricultural soil. J. Soil Sediment 20: 2225-2235. https://doi.org/10.1007/s11368-020-02584-5
- Yang XY, Ren WD, Sun BH, Zhang SL. 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177-178: 49-56. https://doi.org/10.1016/j.geoderma.2012.01.033
- Tang HM, Li C, Xiao XP, Pan XC, Cheng KK, Shi LH. 2020. Effects of long-term fertiliser regime on soil organic carbon and its labile fractions under double cropping rice system of southern China. Acta Agr. Scand B-S P. 70: 409-418.
- Tang HM, Xiao XP, Tang WG, Li C, Wang K, Li WY. 2018. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China. Commun. Soil Sci. Plant Anal. 49: 1976-1989. https://doi.org/10.1080/00103624.2018.1492600
- Blake GR, Hartge KH. 1986. Bulk density. In Klute A (ed.), pp. 363-375. Methods of Soil Analysis. Part I: Physical and Mineralogical Methods Agronomy Monograph No. 9. ASA-SSSA, Madison.
- Bremner JM. 1996. Nitrogen total. In Bartels JM (ed.), pp. 1085-1121. Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, Madison, Wisconsin, USA.
- Jones DL, Willett VB. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38: 991-999. https://doi.org/10.1016/j.soilbio.2005.08.012
- Wu J, Joergensen RG, Pommerening B. 1990. Measurement of soil microbial biomass by fumigation-extraction-an automated procedure. Soil Biol. Biochem. 20: 1167-1169.
- Ezaki S, Maeda N, Kishimoto T, Atomi H, Imanaka T. 1999. Presence of a structurally novel type ribulose bisphosphate carboxylase/ oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J. Biol. Chem. 274: 5078-5082. https://doi.org/10.1074/jbc.274.8.5078
- Lu J, Qiu KC, Li WX, Wu Y, Ti JS, Chen F, et al. 2019. Tillage systems influence the abundance and composition of autotrophic CO2- fixing bacteria in wheat soils in North China. Eur. J. Soil Biol. 93: 103086. https://doi.org/10.1016/j.ejsobi.2019.103086
- SAS. 2008. SAS Software of the SAS System for Windows. SAS Institute Inc., Cary, NC, USA.
- Tang HM, Li C, Wen L, Li WY, Shi LH, Cheng KK, et al. 2020. Microbial carbon source utilization in rice rhizosphere and nonrhizosphere soils in a 34-year fertilized paddy field. J. Basic Microb. 60: 1004-1013. https://doi.org/10.1002/jobm.202000452
- Stursova M, Zifcakova L, Leigh MB, Burgess R, Baldrian P. 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80: 735-746. https://doi.org/10.1111/j.1574-6941.2012.01343.x
- Jia R, Wang K, Li L, Qu Z, Shen WS, Qu D. 2020. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction. Sci. Total Environ. 720: 137633. https://doi.org/10.1016/j.scitotenv.2020.137633
- Yuan H, Ge T, Chen X, Liu S, Zhu Z, Wu X. 2015. Abundance and diversity of CO2-assimilating bacteria and algae within red agricultural soils are modulated by changing management practice. Microb. Ecol. 70: 971-780. https://doi.org/10.1007/s00248-015-0621-8
- Xiao KQ, Bao P, Bao QL, Jia Y, Huang FY, Su JQ. 2014. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/ oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. FEMS Microbiol. Ecol. 87: 89-101. https://doi.org/10.1111/1574-6941.12193
- Sewlesi D, Pattis I, Schmid M, Kandeler E, Hartmann A. 2007. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J. Microbiol. Methods 69: 497-503. https://doi.org/10.1016/j.mimet.2007.03.002
- Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. PNAS 103: 626-631. https://doi.org/10.1073/pnas.0507535103
- Case SDC, Mcnamara NP, Reay DS, Whitaker J. 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-the role of soil aeration. Soil Biol. Biochem. 51: 125-134. https://doi.org/10.1016/j.soilbio.2012.03.017