과제정보
This work was supported by Science and technology project for people's livelihood of Liaoning province[grant numbers 2021JH2/10200009] the Natural Science Foundation of Liaoning province [grant numbers 20180550687, 2019-ZD-0614]
참고문헌
- Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, et al. 2001. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis. 32 Suppl 2: S114-132. https://doi.org/10.1086/320184
- Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. 2019. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17: 203-218. https://doi.org/10.1038/s41579-018-0147-4
- Smeltzer MS. 2016. Staphylococcus aureus pathogenesis: The importance of reduced cytotoxicity. Trends Microbiol. 24: 681. https://doi.org/10.1016/j.tim.2016.07.003
- Zuo QF, Yang LY, Feng Q, Lu DS, Dong YD, Cai CZ, et al. 2013. Evaluation of the protective immunity of a novel subunit fusion vaccine in a murine model of systemic MRSA infection. PLoS One 8: e81212. https://doi.org/10.1371/journal.pone.0081212
- Geoghegan JA, Foster TJ. 2015. Cell wall-anchored surface proteins of Staphylococcus aureus: Many proteins, multiple functions. Curr. Topics Microbiol. Immunol. 409: 95-102.
- Foster TJ, Hook M. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6: 484. https://doi.org/10.1016/S0966-842X(98)01400-0
- Oliveira D, Borges A, Simoes M. 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel) 10: 252. https://doi.org/10.3390/toxins10060252
- AW M, O S. 2008. Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60: 128-141. https://doi.org/10.1124/pr.107.07110
- Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O. 2000. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97: 5510-5515. https://doi.org/10.1073/pnas.080520697
- Wang L, Bi C, Cai H, Liu B, Zhong X, Deng X, et al. 2015. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front. Microbiol. 6: 1031.
- Jonsson IM, Mazmanian SK, Schneewind O, Bremell T, Tarkowski A. 2003. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect. 5: 775-780. https://doi.org/10.1016/S1286-4579(03)00143-6
- Bubeck Wardenburg J, Patel RJ, Schneewind O. 2007. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75: 1040-1044. https://doi.org/10.1128/IAI.01313-06
- Jonsson IM, Mazmanian SK, Schneewind O, Verdrengh M, Bremell T, Tarkowski A. 2002. On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. J. Infect. Dis. 185: 1417-1424. https://doi.org/10.1086/340503
- Cascioferro S, Totsika M, Schillaci D. 2014. Sortase A: An ideal target for anti-virulence drug development. Microb. Pathog. 77: 105-112. https://doi.org/10.1016/j.micpath.2014.10.007
- Maresso AW, Schneewind O. 2008. Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60: 128-141. https://doi.org/10.1124/pr.107.07110
- He M, Min JW, Kong WL, He XH, Li JX, Peng BW. 2016. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115: 74-85. https://doi.org/10.1016/j.fitote.2016.09.011
- Ganesan K, Xu B. 2017. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann. NY Acad. Sci. 1401: 102-113. https://doi.org/10.1111/nyas.13446
- Mu D, Xiang H, Dong H, Wang D, Wang T. 2018. Isovitexin, a potential candidate inhibitor of sortase A of Staphylococcus aureus USA300. J. Microbiol. Biotechnol. 28: 1426-1432. https://doi.org/10.4014/jmb.1802.02014
- Lu C, Zhu J, Wang Y, Umeda A, Cowmeadow RB, Lai E, et al. 2007. Staphylococcus aureus sortase A exists as a dimeric protein in vitro. Biochemistry 46: 9346-9354. https://doi.org/10.1021/bi700519w
- Mazmanian SK, Ton-That H, Su K, Schneewind O. 2002. An iron-regulated sortase anchors A class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 99: 2293-2298. https://doi.org/10.1073/pnas.032523999
- Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O. 1999. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96: 12424-12429. https://doi.org/10.1073/pnas.96.22.12424
- Kim D, Park J, Kim J, Han C, Yoon J, Kim N, et al. 2006. Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study. J. Agric. Food Chem. 54: 935-941. https://doi.org/10.1021/jf0521855
- Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.
- Pierce LC, Salomon-Ferrer R, Augusto F. de Oliveira C, McCammon JA, Walker RC. 2012. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput. 8: 2997-3002. https://doi.org/10.1021/ct300284c
- Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. 2012. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 8: 1542-1555. https://doi.org/10.1021/ct200909j
- Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. 2013. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9: 3878-3888. https://doi.org/10.1021/ct400314y
- Niu X, Qiu J, Wang X, Gao X, Dong J, Wang J, et al. 2013. Molecular insight into the inhibition mechanism of cyrtominetin to αhemolysin by molecular dynamics simulation. Eur. J. Med. Chem. 62: 320-328. https://doi.org/10.1016/j.ejmech.2013.01.008
- Marraffini LA, DeDent AC, Schneewind O. 2006. Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70: 192-221. https://doi.org/10.1128/MMBR.70.1.192-221.2006
- Wang L, Li Q, Li J, Jing S, Jin Y, Yang L, et al. 2021. Eriodictyol as a potential candidate inhibitor of sortase A protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia. Front. Microbiol. 12: 635710. https://doi.org/10.3389/fmicb.2021.635710
- Chen S, Paterson GK, Tong HH, Mitchell TJ, DeMaria TF. 2005. Sortase A contributes to pneumococcal nasopharyngeal colonization in the chinchilla model. FEMS Microbiol. Lett. 253: 151-154. https://doi.org/10.1016/j.femsle.2005.09.052
- Dan Mu, Hua Xiang, Haisi Dong, Wang D, Wang T. 2018. Isovitexin, a potential candidate inhibitor of sortase A of Staphylococcus aureus USA300. J. Microbiol. Biotechnol. 28: 1426-1432. https://doi.org/10.4014/jmb.1802.02014