Acknowledgement
This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202112101).
References
- Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. 2011. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91: 471-490. https://doi.org/10.1007/s00253-011-3394-0
- Woodwell GM. 1989. The warming of the industrialized middle latitudes 1985-2050: Causes and consequences. Clim. Change 15: 31-50. https://doi.org/10.1007/BF00138844
- Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20: 538-548. https://doi.org/10.1111/j.1523-1739.2006.00364.x
- Khasnis AA, Nettleman MD. 2005. Global warming and infectious disease. Arch. Med. Res. 36: 689-696. https://doi.org/10.1016/j.arcmed.2005.03.041
- Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Machado IM, Atsumi S. 2012. Cyanobacterial biofuel production. J. Biotechnol. 162: 50-56. https://doi.org/10.1016/j.jbiotec.2012.03.005
- Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Prasanna R, Renuka N, Nain L, Ramakrishnan B. 2021. Natural and constructed cyanobacteria-based consortia for enhancing crop growth and soil fertility, pp. 333-362. In Seneviratne G, Zavahir JS (eds.), Role of Microbial Communities for Sustainability, vol. 29. Springer, Singapore.
- Lau N-S, Matsui M, Abdullah AA-A. 2015. Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res. Int. 2015: 754934.
- Sivonen K. 1996. Cyanobacterial toxins and toxin production. Phycologia 35: 12-24. https://doi.org/10.2216/i0031-8884-35-6S-12.1
- Gantar M, Svircev Z. 2008. Microalgae and cyanobacteria: food for thought 1. J. Phycol. 44: 260-268. https://doi.org/10.1111/j.1529-8817.2008.00469.x
- Zeng Y, Tang J, Lian S, Tong D, Hu C. 2015. Study on the conversion of cyanobacteria of Taihu Lake water blooms to biofuels.Biomass Bioenergy 73: 95-101. https://doi.org/10.1016/j.biombioe.2014.12.007
- Jebali A, Acien F, Jimenez-Ruiz N, Gomez C, Fernandez-Sevilla J, Mhiri N, et al. 2019. Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production. Biotechnol. Biofuels 12: 119. https://doi.org/10.1186/s13068-019-1461-4
- Abdelaziz AEM, Ghosh D, Hallenbeck PC. 2014. Characterization of growth and lipid production by Chlorella sp. PCH90, a microalga native to Quebec. Bioresour. Technol. 156: 20-28. https://doi.org/10.1016/j.biortech.2014.01.004
- Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiol. 111: 1-61. https://doi.org/10.1099/00221287-111-1-1
- Ritchie RJ. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89: 27-41. https://doi.org/10.1007/s11120-006-9065-9
- Khatoon H, Kok Leong L, Abdu Rahman N, Mian S, Begum H, Banerjee S, et al. 2018. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour. Technol. 249: 652-658. https://doi.org/10.1016/j.biortech.2017.10.052
- Cuellar-Bermudez SP, Magdalena JA, Muylaert K, Gonzalez-Fernandez C. 2019. High methane yields in anaerobic digestion of the cyanobacterium Pseudanabaena sp. Algal Res. 44: 101689. https://doi.org/10.1016/j.algal.2019.101689
- Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S. 1993. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng. 76: 408-410. https://doi.org/10.1016/0922-338X(93)90034-6
- D'Imporzano G, Silvia S, Davide V, Barbara S, Fabrizio A. 2017. Microalgae mixotrophic growth: opportunity for stream depuration and carbon recovery, pp. 141-177. In Tripathi B, Kumar D (eds.), Prospects and Challenges in Algal Biotechnology, Springer, Singapore.
- Chen T, Zheng W, Yang F, Bai Y, Wong Y-S. 2006. Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments. Enzyme Microb. Technol. 39: 103-107. https://doi.org/10.1016/j.enzmictec.2005.10.001
- Hassall K. 1958. Xylose as a specific inhibitor of photosynthesis. Nature 181: 1273-1274. https://doi.org/10.1038/1811273a0
- Cheng J, Fan W, Zheng L. 2021. Development of a mixotrophic cultivation strategy for simultaneous improvement of biomass and photosynthetic efficiency in freshwater microalga Scenedesmus obliquus by adding appropriate concentration of sodium acetate. Biochem. Eng. J. 176: 108177. https://doi.org/10.1016/j.bej.2021.108177
- Heinz S, Liauw P, Nickelsen J, Nowaczyk M. 2016. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta Bioenerg. 1857: 274-287. https://doi.org/10.1016/j.bbabio.2015.11.007
- Kim DH, Kim JY, Oh J-J, Jeon MS, An HS, Jin CR, et al. 2021. A strategic approach to apply bacterial substances for increasing metabolite productions of Euglena gracilis in the bioreactor. Appl. Microbiol. Biotechnol. 105: 5395-5406. https://doi.org/10.1007/s00253-021-11412-w
- Lin Z, Raya A, Ju L-K. 2014. Microalga Ochromonas danica fermentation and lipid production from waste organics such as ketchup. Process Biochem. 49: 1383-1392. https://doi.org/10.1016/j.procbio.2014.05.015
- Patel BH. 2011. 11 - Natural dyes, pp. 395-424. In Clark M (ed.), Handbook of Textile and Industrial Dyeing, Woodhead Publishing Ltd., Cambridge, UK
- da Silva Ferreira V, Sant'Anna C. 2017. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 33: 20. https://doi.org/10.1007/s11274-016-2181-6
- Caporgno MP, Haberkorn I, Bocker L, Mathys A. 2019. Cultivation of Chlorella protothecoides under different growth modes and its utilisation in oil/water emulsions. Bioresour. Technol. 288: 121476. https://doi.org/10.1016/j.biortech.2019.121476
- Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z. 2009. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J. Appl. Phycol. 21: 239-246. https://doi.org/10.1007/s10811-008-9355-z
- Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. 2019. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol. Adv. 37: 422-443. https://doi.org/10.1016/j.biotechadv.2019.02.010
- Khoobkar Z, Delavari Amrei H. 2021. Effect of photo, hetero and mixotrophic conditions on the growth and composition of Anabaena variabilis: An energy nexus approach. Energy Nexus 2: 100010. https://doi.org/10.1016/j.nexus.2021.100010
- Parsaeimehr A, Ahmed II, Deumaga MLK, Hankoua B, Ozbay G. 2022. Enhancement in phycobiliprotein accumulation in Aphanothece sp. using different carbon sources and flashing frequency. Algal. Res. 66: 102805. https://doi.org/10.1016/j.algal.2022.102805
- Kaushal S, Singh Y, Khattar J, Singh D. 2017. Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J. Appl. Phycol. 29: 1819-1827. https://doi.org/10.1007/s10811-017-1093-7
- Portillo FV-L, Sierra-Ibarra E, Vera-Estrella R, Revah S, Ramirez OT, Caspeta L, et al. 2022. Growth and phycocyanin production with Galdieria sulphuraria UTEX 2919 using xylose, glucose, and corn stover hydrolysates under heterotrophy and mixotrophy. Algal. Res. 65: 102752. https://doi.org/10.1016/j.algal.2022.102752
- Sloth JK, Wiebe MG, Eriksen NT. 2006. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb. Technol. 38: 168-175. https://doi.org/10.1016/j.enzmictec.2005.05.010
- Abiusi F, Monino Fernandez P, Canziani S, Janssen M, Wijffels RH, Barbosa M. 2022. Mixotrophic cultivation of Galdieria sulphuraria for C-phycocyanin and protein production. Algal Res. 61: 102603. https://doi.org/10.1016/j.algal.2021.102603
- Rosa Cunha W, Godoy Cottas A, Azevedo Teixeira T, de Souza Ferreira J. 2020. Evaluation of phicocyanin produced by Anabaena variabilis using different organic carbon sources. J. Eng. Exact Sci. 6: 3.
- Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, et al. 2017. Phycocyanin: a potential drug for cancer treatment. J. Cancer 8: 3416. https://doi.org/10.7150/jca.21058
- Huang A, Sun L, Wu S, Liu C, Zhao P, Xie X, et al. 2017. Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J. Appl. Phycol. 29: 23-33. https://doi.org/10.1007/s10811-016-0920-6
- Mondal M, Ghosh A, Sharma AS, Tiwari O, Gayen K, Mandal M, et al. 2016. Mixotrophic cultivation of Chlorella sp. BTA 9031 and Chlamydomonas sp. BTA 9032 isolated from coal field using various carbon sources for biodiesel production. Energy Convers. Manag. 124: 297-304. https://doi.org/10.1016/j.enconman.2016.07.033
- Griffiths MJ, Harrison ST. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507. https://doi.org/10.1007/s10811-008-9392-7
- Jung J-M, Kim JY, Jung S, Choi Y-E, Kwon EE. 2021. Quantitative study on lipid productivity of Euglena gracilis and its biodiesel production according to the cultivation conditions. J. Clean. Prod. 291: 125218. https://doi.org/10.1016/j.jclepro.2020.125218
- Lari Z, Abrishamchi P, Ahmadzadeh H, Soltani N. 2019. Differential carbon partitioning and fatty acid composition in mixotrophic and autotrophic cultures of a new marine isolate Tetraselmis sp. KY114885. J. Appl. Phycol. 31: 201-210. https://doi.org/10.1007/s10811-018-1549-4
- Baldisserotto C, Popovich C, Giovanardi M, Sabia A, Ferroni L, Constenla D, et al. 2016. Photosynthetic aspects and lipid profiles in the mixotrophic alga Neochloris oleoabundans as useful parameters for biodiesel production. Algal Res. 16: 255-265. https://doi.org/10.1016/j.algal.2016.03.022
- Liu L, Zhao Y, Jiang X, Wang X, Liang W. 2018. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresour. Technol. 262: 342-346. https://doi.org/10.1016/j.biortech.2018.04.092
- Singhasuwan S, Choorit W, Sirisansaneeyakul S, Kokkaew N, Chisti Y. 2015. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. J. Biotechnol. 216: 169-177. https://doi.org/10.1016/j.jbiotec.2015.10.003
- Lanjekar RD, Deshmukh D. 2016. A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties. Renew. Sustain. Energy Rev. 54: 1401-1411. https://doi.org/10.1016/j.rser.2015.10.034
- Stansell GR, Gray VM, Sym SD. 2012. Microalgal fatty acid composition: implications for biodiesel quality. J. Appl. Phycol. 24: 791-801. https://doi.org/10.1007/s10811-011-9696-x
- Talebi AF, Tabatabaei M, Chisti Y. 2014. BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res. J. 1: 55-57.
- Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. 2012. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16: 143-169. https://doi.org/10.1016/j.rser.2011.07.143
- Knothe G. 2016. Chapter 2 - Biodiesel and Its Properties, pp. 15-42. In: McKeon TA, Hayes DG, Hildebrand DF, Weselake RJ (eds.), Industrial Oil Crops, AOCS Press.
- Shahabuddin M, Kalam MA, Masjuki HH, Bhuiya MMK, Mofijur M. 2012. An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy 44: 616-622. https://doi.org/10.1016/j.energy.2012.05.032
- Saeedi Dehaghani AH, Rahimi R. 2019. An experimental study of diesel fuel cloud and pour point reduction using different additives. Petroleum 5: 413-416. https://doi.org/10.1016/j.petlm.2018.06.005
- Lee WS, Chua ASM, Yeoh HK, Ngoh GC. 2014. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 235: 83-99. https://doi.org/10.1016/j.cej.2013.09.002
- Li Y, He D, Niu D, Zhao Y. 2015. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst. Eng. 38: 863-869. https://doi.org/10.1007/s00449-014-1329-8
- Sharma P, Gaur VK, Sirohi R, Varjani S, Kim SH, Wong JW. 2021. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 325: 124684. https://doi.org/10.1016/j.biortech.2021.124684
- Sharma YC, Singh B, Korstad J. 2011. A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem. 13: 2993-3006. https://doi.org/10.1039/c1gc15535k
- Yadav G, Sekar M, Kim S-H, Geo VE, Bhatia SK, Sabir JS, et al. 2021. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. Bioresour. Technol. 325: 124654. https://doi.org/10.1016/j.biortech.2020.124654
- Anahas AMP, Muralitharan G. 2015. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles. Bioresour. Technol. 184: 9-17. https://doi.org/10.1016/j.biortech.2014.11.003
- Shanmugam S, Mathimani T, Anto S, Sudhakar M, Kumar SS, Pugazhendhi A. 2020. Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresour. Technol. 304: 123061. https://doi.org/10.1016/j.biortech.2020.123061
- Patel VK, Sundaram S, Patel AK, Kalra A. 2018. Characterization of seven species of cyanobacteria for high-quality biomass production. Arab. J. Sci. Eng. 43: 109-121. https://doi.org/10.1007/s13369-017-2666-0
- Kings AJ, Raj RE, Miriam LM, Visvanathan MA. 2017. Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Convers. Manag. 141: 224-235. https://doi.org/10.1016/j.enconman.2016.08.018
- Jacob-Lopes E, Santos AB, Severo IA, Depra MC, Maroneze MM, Zepka LQ. 2020. Dual production of bioenergy in heterotrophic cultures of cyanobacteria: Process performance, carbon balance, biofuel quality and sustainability metrics. Biomass Bioenergy 142: 105756. https://doi.org/10.1016/j.biombioe.2020.105756
- Dahiya S, Sarkar O, Swamy Y, Mohan SV. 2015. Acidogenic fermentation of food waste for volatile fatty acid production with cogeneration of biohydrogen. Bioresour. Technol. 182: 103-113. https://doi.org/10.1016/j.biortech.2015.01.007
- Esteban-Gutierrez M, Garcia-Aguirre J, Irizar I, Aymerich E. 2018. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Waste Manage. 77: 203-212. https://doi.org/10.1016/j.wasman.2018.05.027
- Liu X, Liu H, Du G, Chen J. 2009. Improved bioconversion of volatile fatty acids from waste activated sludge by pretreatment. Water Environ. Res. 81: 13-20. https://doi.org/10.2175/106143008X304640
- Horiuchi J-I, Tabata K, Kanno T, Kobayashi M. 2000. Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. J. Biosci. Bioeng. 89: 126-130. https://doi.org/10.1016/S1389-1723(00)88725-3
- Li Y, Su D, Feng H, Yan F, Liu H, Feng L, et al. 2017. Anaerobic acidogenic fermentation of food waste for mixed-acid production. Energy Sources A: Recovery Util. Environ. Eff. 39: 631-635.