References
- Khan SA, Tavolari S, Brandi G. 2019. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 39 Suppl 1: 19-31. https://doi.org/10.1111/liv.14095
- Blechacz B. 2017. Cholangiocarcinoma: Current knowledge and new developments. Gut Liver 11: 13-26. https://doi.org/10.5009/gnl15568
- Rodrigues PM, Olaizola P, Paiva NA, Olaizola I, Agirre-Lizaso A, Landa A, et al. 2021. Pathogenesis of cholangiocarcinoma. Annu. Rev. Pathol. 16: 433-463. https://doi.org/10.1146/annurev-pathol-030220-020455
- Cardinale V, Bragazzi MC, Carpino G, Torrice A, Fraveto A, Gentile R, et al. 2013. Cholangiocarcinoma: increasing burden of classifications. Hepatobiliary Surg. Nutr. 2: 272-280.
- Valle JW, Kelley RK, Nervi B, Oh DY, Zhu AX. 2021. Biliary tract cancer. Lancet 397: 428-444. https://doi.org/10.1016/S0140-6736(21)00153-7
- Gigante E, Paradis V, Ronot M, Cauchy F, Soubrane O, Ganne-Carrie N, et al. 2021. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep. 3: 100174. https://doi.org/10.1016/j.jhepr.2020.100174
- Coelho R, Silva M, Rodrigues-Pinto E, Cardoso H, Lopes S, Pereira P, et al. 2017. CA 19-9 as a marker of survival and a predictor of metastization in cholangiocarcinoma. GE Port. J. Gastroenterol. 24: 114-121. https://doi.org/10.1159/000452691
- Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. 2018. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 15: 95-111. https://doi.org/10.1038/nrclinonc.2017.157
- Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. 2020. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17: 557-588. https://doi.org/10.1038/s41575-020-0310-z
- Lee YT, Tan YJ, Oon CE. 2018. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 834: 188-196. https://doi.org/10.1016/j.ejphar.2018.07.034
- Bayat A. 2002. Science, medicine, and the future: Bioinformatics. BMJ 324: 1018-1022. https://doi.org/10.1136/bmj.324.7344.1018
- Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. 2018. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19: 286-302. https://doi.org/10.1093/bib/bbw114
- Pereira CA, Saye M, Reigada C, Silber AM, Labadie GR, Miranda MR, et al. 2020. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 147: 611-633. https://doi.org/10.1017/S0031182020000207
- Iqbal D, Rehman MT, Bin Dukhyil A, Rizvi SMD, Al Ajmi MF, Alshehri BM, et al. 2021. High-throughput screening and molecular dynamics simulation of natural product-like compounds against Alzheimer's disease through multitarget approach. Pharmaceuticals (Basel) 14: 937. https://doi.org/10.3390/ph14090937
- Batool M, Ahmad B, Choi S. 2019. A structure-based drug discovery paradigm. Int. J. Mol. Sci. 20: 2783. https://doi.org/10.3390/ijms20112783
- Alamri MA, Alamri MA. 2019. Pharmacophore and docking-based sequential virtual screening for the identification of novel Sigma 1 receptor ligands. Bioinformation 15: 586-595. https://doi.org/10.6026/97320630015586
- Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, et al. 2009. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Acta Pharmacol. Sin. 30: 1694-1708. https://doi.org/10.1038/aps.2009.159
- Clough E, Barrett T. 2016. The gene expression omnibus database. Methods Mol. Biol. 1418: 93-110. https://doi.org/10.1007/978-1-4939-3578-9_5
- Wang Z, Jensen MA, Zenklusen JC. 2016. A practical guide to the cancer genome atlas (TCGA). Methods Mol. Biol. 1418: 111-141. https://doi.org/10.1007/978-1-4939-3578-9_6
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47. https://doi.org/10.1093/nar/gkv007
- Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140. https://doi.org/10.1093/bioinformatics/btp616
- Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. 2013. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41: D991-995.
- Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. https://doi.org/10.1038/nprot.2008.211
- Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45: D362-D368. https://doi.org/10.1093/nar/gkw937
- Su G, Morris JH, Demchak B, Bader GD. 2014. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinformatics 47: 8.13-1-24.
- Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 Suppl 4: S11. https://doi.org/10.1186/1752-0509-8-S4-S11
- Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45: W98-W102. https://doi.org/10.1093/nar/gkx247
- Agarwal V, Bell GW, Nam JW, Bartel DP. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4: e05005. https://doi.org/10.7554/eLife.05005
- Wong NW, Chen Y, Chen S, Wang X. 2018. OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics 34: 713-715. https://doi.org/10.1093/bioinformatics/btx627
- Sunseri J, Koes DR. 2016. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 44: W442-448. https://doi.org/10.1093/nar/gkw287
- Wood DJ, Korolchuk S, Tatum NJ, Wang LZ, Endicott JA, Noble MEM, et al. 2019. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell. Chem. Biol. 26: 121-130 e125. https://doi.org/10.1016/j.chembiol.2018.10.015
- Molvarec A, Kalabay L, Derzsy Z, Szarka A, Halmos A, Stenczer B, et al. 2009. Preeclampsia is associated with decreased serum alpha(2)-HS glycoprotein (fetuin-A) concentration. Hypertens. Res. 32: 665-669. https://doi.org/10.1038/hr.2009.79
- Palta S, Saroa R, Palta A. 2014. Overview of the coagulation system. Indian J. Anaesth. 58: 515-523. https://doi.org/10.4103/0019-5049.144643
- Wieczorek E, Ozyhar A. 2021. Transthyretin: from structural stability to osteoarticular and cardiovascular diseases. Cells 10: 1768. https://doi.org/10.3390/cells10071768
- Peyrou M, Cereijo R, Quesada-Lopez T, Campderros L, Gavalda-Navarro A, Linares-Pose L, et al. 2020. The kallikrein-kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nat. Commun. 11: 2132. https://doi.org/10.1038/s41467-020-16009-x
- Zamolodchikov D, Duffield M, Macdonald LE, Alessandri-Haber N. 2022. Accumulation of high molecular weight kininogen in the brains of Alzheimer's disease patients may affect microglial function by altering phagocytosis and lysosomal cathepsin activity. Alzheimers Dement. 18: 1919-1929. https://doi.org/10.1002/alz.12531
- Feinstein DI. 2015. Disseminated intravascular coagulation in patients with solid tumors. Oncology (Williston Park) 29: 96-102.
- Chen D, Wu H, He B, Lu Y, Wu W, Liu H, et al. 2019. Five hub genes can be the potential DNA methylation biomarkers for cholangiocarcinoma using bioinformatics analysis. Onco Targets Ther. 12: 8355-8365. https://doi.org/10.2147/OTT.S203342
- Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, et al. 2020. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci. 21: 1960. https://doi.org/10.3390/ijms21061960
- Strzalka W, Ziemienowicz A. 2011. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann. Bot. 107: 1127-1140. https://doi.org/10.1093/aob/mcq243
- De March M, Barrera-Vilarmau S, Crespan E, Mentegari E, Merino N, Gonzalez-Magana A, et al. 2018. p15PAF binding to PCNA modulates the DNA sliding surface. Nucleic Acids Res. 46: 9816-9828. https://doi.org/10.1093/nar/gky723
- Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Roskoski R, Jr. 2019. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol. Res. 139: 471-488. https://doi.org/10.1016/j.phrs.2018.11.035
- Kommalapati A, Tella SH, Borad M, Javle M, Mahipal A. 2021. FGFR inhibitors in oncology: Insight on the management of toxicities in clinical practice. Cancers (Basel) 13: 2968. https://doi.org/10.3390/cancers13122968