DOI QR코드

DOI QR Code

Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds

  • Seo, Ji-Hye (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Jang, Si Won (Department of Agricultural Convergence Technology, Jeonbuk National University) ;
  • Jeon, Young-Joo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Eun, So Young (Musculoskeletal and Immune Disease Research Institute School of Medicine, Wonkwang University) ;
  • Hong, Yean Ju (Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School) ;
  • Do, Jeong Tae (Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University) ;
  • Chae, Jung-il (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Choi, Hyun Woo (Department of Agricultural Convergence Technology, Jeonbuk National University)
  • Received : 2022.08.30
  • Accepted : 2022.09.13
  • Published : 2022.10.28

Abstract

Induced pluripotent stem cells (iPSCs) can be generated from somatic cells using Oct4, Sox2, Klf4, and c-Myc (OSKM). Small molecules can enhance reprogramming. Licochalcone D (LCD), a flavonoid compound present mainly in the roots of Glycyrrhiza inflata, acts on known signaling pathways involved in transcriptional activity and signal transduction, including the PGC1-α and MAPK families. In this study, we demonstrated that LCD improved reprogramming efficiency. LCD-treated iPSCs (LCD-iPSCs) expressed pluripotency-related genes Oct4, Sox2, Nanog, and Prdm14. Moreover, LCD-iPSCs differentiated into all three germ layers in vitro and formed chimeras. The mesenchymal-to-epithelial transition (MET) is critical for somatic cell reprogramming. We found that the expression levels of mesenchymal genes (Snail2 and Twist) decreased and those of epithelial genes (DSP, Cldn3, Crb3, and Ocln) dramatically increased in OR-MEF (OG2+/+/ROSA26+/+) cells treated with LCD for 3 days, indicating that MET effectively occurred in LCD-treated OR-MEF cells. Thus, LCD enhanced the generation of iPSCs from somatic cells by promoting MET at the early stages of reprogramming.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R111A1A01048981) and the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (NRF-2017R1C1B5077043).

References

  1. Takahashi K, Yamanaka SJc. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  2. Thakurela S, Sindhu C, Yurkovsky E, Riemenschneider C, Smith ZD, Nachman I, et al. 2019. Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nat. Commun. 10: 4444. https://doi.org/10.1038/s41467-019-11741-5
  3. Hussein SM, Puri MC, Tonge PD, Benevento M, Corso AJ, Clancy JL, et al. 2014. Genome-wide characterization of the routes to pluripotency. Nature 516: 198-206. https://doi.org/10.1038/nature14046
  4. Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. 2010. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7: 51-63. https://doi.org/10.1016/j.stem.2010.04.014
  5. Zunder ER, Lujan E, Goltsev Y, Wernig M, Nolan GPJCsc. 2015. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16: 323-337. https://doi.org/10.1016/j.stem.2015.01.015
  6. Jones PAJNRG. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Net. Rev. Genet. 13: 484-492. https://doi.org/10.1038/nrg3230
  7. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, et al. 2012. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151: 1617-1632. https://doi.org/10.1016/j.cell.2012.11.039
  8. Peinado H, Quintanilla M, Cano AJJoBC. 2003. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278: 21113-21123. https://doi.org/10.1074/jbc.M211304200
  9. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, et al. 2006. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8: 188-194. https://doi.org/10.1038/ncb1353
  10. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding SJCsc. 2008. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3: 568-574. https://doi.org/10.1016/j.stem.2008.10.004
  11. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. 2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26: 795-797. https://doi.org/10.1038/nbt1418
  12. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. 2009. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5: 491-503. https://doi.org/10.1016/j.stem.2009.09.012
  13. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. 2010. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6: 71-79. https://doi.org/10.1016/j.stem.2009.12.001
  14. Cerella C, Gaigneaux A, Dicato M, Diederich MJCL. 2015. Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett. 356: 251-262. https://doi.org/10.1016/j.canlet.2014.02.008
  15. Furusawa J-i, Funakoshi-Tago M, Mashino T, Tago K, Inoue H, Sonoda Y, et al. 2009. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-κB p65 in LPS signaling pathway. Int. Immunopharmacol. 9: 499-507. https://doi.org/10.1016/j.intimp.2009.01.031
  16. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. 2004. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Inverst. 114: 569-581. https://doi.org/10.1172/JCI200421358
  17. Wang Z, Liu Z, Cao Y, Paudel S, Yoon G, Cheon SHJBotKCS. 2013. Short and efficient synthesis of licochalcone B and D through acid-mediated Claisen-Schmidt condensation. Bull. Korean Chem. Soc. 34: 3906-3908. https://doi.org/10.5012/bkcs.2013.34.12.3906
  18. Choi HW, Kim JS, Choi S, Hong YJ, Kim MJ, Seo HG, et al. 2014. Neural stem cells differentiated from iPS cells spontaneously regain pluripotency. Stem Cells 32: 2596-2604. https://doi.org/10.1002/stem.1757
  19. Zhang L, Yin J-C, Yeh H, Ma N-X, Lee G, Chen XA, et al. 2015. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17: 735-747. https://doi.org/10.1016/j.stem.2015.09.012
  20. Zheng J, Choi K-A, Kang PJ, Hyeon S, Kwon S, Moon J-H, et al. 2016. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochem. Biophys. Res. Cpommun. 476: 42-48. https://doi.org/10.1016/j.bbrc.2016.05.080
  21. Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Zhou X-F, Liao Hong. 2018. Small molecules for neural stem cell induction. Stem Cells Dev. 27: 297-312. https://doi.org/10.1089/scd.2017.0282
  22. Grunert S, Jechlinger M, Beug Hartmut. 2003. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 4: 657-665. https://doi.org/10.1038/nrm1175
  23. Maherali N, Hochedlinger Konard. 2009. Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19: 1718-1723. https://doi.org/10.1016/j.cub.2009.08.025
  24. Thiery JP, Acloque H, Huang RY, Nieto MAJc. 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139: 871-890. https://doi.org/10.1016/j.cell.2009.11.007
  25. Thiery JP. 2003. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15: 740-746. https://doi.org/10.1016/j.ceb.2003.10.006
  26. Samavarchi-Tehrani P, Golipour A, David L, Sung H-K, Beyer TA, Datti A, et al. 2010. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7: 64-77. https://doi.org/10.1016/j.stem.2010.04.015
  27. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith AJPb. 2008. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6: e253. https://doi.org/10.1371/journal.pbio.0060253
  28. 2007. All natural. Nat. Chem. Biol. 3: 351. https://www.nature.com/articles/nchembio0707-351#citeas. https://doi.org/10.1038/nchembio0707-351
  29. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, et al. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33: 1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  30. Romashkova JA, Makarov SSJN. 1999. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86-90. https://doi.org/10.1038/43474
  31. Kane LP, Shapiro VS, Stokoe D, Weiss AJCB. 1999. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9: 601-604. https://doi.org/10.1016/S0960-9822(99)80265-6
  32. Nidai Ozes O, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DBJN. 1999. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82-85. https://doi.org/10.1038/43466
  33. Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T, et al. 1999. Limb and skin abnormalities in mice lacking IKKα. Science 284: 313-316. https://doi.org/10.1126/science.284.5412.313
  34. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. 2001. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107: 763-775. https://doi.org/10.1016/S0092-8674(01)00599-2