Acknowledgement
The Gachon University research fund was supported for this work by of 2019(GCU-2019-0720). We thank to the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (grant number 2020R1C1C1007712).
References
- Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3-21. https://doi.org/10.1016/j.diabres.2004.09.004
- Allaman I, Belanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci. 2015;9:23.
- Baig MH, Jan AT, Rabbani G, Ahmad K, Ashraf JM, Kim T, et al. Methylglyoxal and advanced glycation end products: insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci Rep. 2017;7:5916. https://doi.org/10.1038/s41598-017-06067-5
- Berlanga J, Cibrian D, Guillen I, Freyre F, Alba JS, Lopez-Saura P, et al. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci. 2005;109:83-95. https://doi.org/10.1042/CS20050026
- Bezold V, Rosenstock P, Scheffler J, Geyer H, Horstkorte R, Bork K. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency. Aging. 2019;11:5258-75. https://doi.org/10.18632/aging.102123
- Cernuda-Morollon E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res. 2006;98:757-67. https://doi.org/10.1161/01.RES.0000210579.35304.d3
- Cha SH, Han EJ, Ahn G, Jun HS. Taurine-rich-containing hot water extract of Loliolus beka gray meat scavenges palmitate-induced free radicals and protects against DNA damage in insulin secreting β-cells. Adv Exp Med Biol. 2019;1155:483-95. https://doi.org/10.1007/978-981-13-8023-5_45
- Cha SH, Hwang Y, Heo SJ, Jun HS. Diphlorethohydroxycarmalol attenuates methylglyoxal-induced oxidative stress and advanced glycation end product formation in human kidney cells. Oxid Med Cell Longev. 2018;2018:3654095.
- Chou CK, Chen SM, Li YC, Huang TC, Lee JA. Low-molecular-weight chitosan scavenges methylglyoxal and Nε -(carboxyethyl)lysine, the major factors contributing to the pathogenesis of nephropathy. SpringerPlus. 2015;4:312. https://doi.org/10.1186/s40064-015-1106-4
- El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409-17. https://doi.org/10.1084/jem.20081188
- Gkogkolou P, Bohm M. Advanced glycation end products: key players in skin aging? Dermato-endocrinol. 2012;4:259-70. https://doi.org/10.4161/derm.22028
- Goligorsky MS. Endothelial cell dysfunction: can't live with it, how to live without it. Am J Physiol Renal Physiol. 2005;288:F871-80. https://doi.org/10.1152/ajprenal.00333.2004
- Grosso G, Stepaniak U, Micek A, Kozela M, Stefler D, Bobak M, et al. Dietary polyphenol intake and risk of type 2 diabetes in the Polish Arm of the Health, Alcohol and Psychosocial Factors in Eastern Europe (HAPIEE) study. Br J Nutr. 2017;118:60-8. https://doi.org/10.1017/S0007114517001805
- Han EJ, Um JH, Kim EA, Lee WW, Kang N, Oh JY, et al. Protective effects of an water extracts prepared from Loliolus beka gray meat against H2O2-induced oxidative stress in Chang liver cells and zebrafish embryo model. Adv Exp Med Biol. 2017;975:585-601. https://doi.org/10.1007/978-94-024-1079-2_46
- Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes/Metab Res Rev. 2001;17:330-46. https://doi.org/10.1002/dmrr.229
- Hanssen NMJ, Stehouwer CDA, Schalkwijk CG. Methylglyoxal stress, the glyoxalase system, and diabetic chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28:26-33. https://doi.org/10.1097/MNH.0000000000000465
- He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. Glyoxalase system: a systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother. 2020;131:110663. https://doi.org/10.1016/j.biopha.2020.110663
- Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2009;615:252-6. https://doi.org/10.1016/j.ejphar.2009.05.017
- Kopytek M, Zabczyk M, Mazur P, Undas A, Natorska J. Accumulation of advanced glycation end products (AGEs) is associated with the severity of aortic stenosis in patients with concomitant type 2 diabetes. Cardiovasc Diabetol. 2020;19:92. https://doi.org/10.1186/s12933-020-01068-7
- Kulkarni YA. Diabetes, diabetic complications and natural products. Pharm Crop. 2014;5:9-10. https://doi.org/10.2174/2210290601405010009
- Lee WW, Han EJ, Shin EJ, Han HJ, Ahn G, Cha SH. Protective effect of hot water extract of Loliolus Beka gray meat against palmitate-induced HUVEC damage. Adv Exp Med Biol. 2019;1155:717-27. https://doi.org/10.1007/978-981-13-8023-5_62
- Nagai R, Shirakawa J, Ohno R, Moroishi N, Nagai M. Inhibition of AGEs formation by natural products. Amino Acids. 2014;46:261-6. https://doi.org/10.1007/s00726-013-1487-z
- Park CH, Kim JW. Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean J Ophthalmol. 2012;26:123-31. https://doi.org/10.3341/kjo.2012.26.2.123
- Pastor-Belda M, Fernandez-Garcia AJ, Campillo N, Perez-Carceles MD, Motas M, Hernandez-Cordoba M, et al. Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry. J Chromatogr A. 2017;1509:43-9. https://doi.org/10.1016/j.chroma.2017.06.041
- Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol. 1999;58:1765-73. https://doi.org/10.1016/S0006-2952(99)00263-4
- Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020;100:407-61. https://doi.org/10.1152/physrev.00001.2019
- Sena CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P, et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 2012;65:497-506. https://doi.org/10.1016/j.phrs.2012.03.004
- Senda M, Ogawa S, Nako K, Okamura M, Sakamoto T, Ito S. The strong relation between post-hemodialysis blood methylglyoxal levels and post-hemodialysis blood glucose concentration rise. Clin Exp Nephrol. 2015;19:527-33. https://doi.org/10.1007/s10157-014-1018-6
- Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101:1142-7. https://doi.org/10.1172/JCI119885
- Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
- Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2014;3:94-108. https://doi.org/10.1016/j.molmet.2013.11.006
- Stratmann B, Engelbrecht B, Espelage BC, Klusmeier N, Tiemann J, Gawlowski T, et al. Glyoxalase 1-knockdown in human aortic endothelial cells - effect on the proteome and endothelial function estimates. Sci Rep. 2016;6:37737. https://doi.org/10.1038/srep37737
- Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron. 2015;130:48-53. https://doi.org/10.1159/000381315
- Wang Z, Zhang J, Chen L, Li J, Zhang H, Guo X. Glycine suppresses AGE/RAGE signaling pathway and subsequent oxidative stress by restoring Glo1 function in the aorta of diabetic rats and in HUVECs. Oxid Med Cell Longev. 2019;2019:4628962.
- Xiao JB, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015;22:23-38. https://doi.org/10.2174/0929867321666140706130807