DOI QR코드

DOI QR Code

Hot water extract of Loliolus beka attenuates methylglyoxal-induced advanced glycation end products formation in human umbilical vein endothelial cells

  • Cha, Seon-Heui (Department of Marine Bio and Medical Sciences, Hanseo University) ;
  • Jun, Hee-Sook (Department of Marine Bio and Medical Sciences, Hanseo University)
  • Received : 2022.06.06
  • Accepted : 2022.09.14
  • Published : 2022.10.31

Abstract

Over production of methylglyoxal (MGO) a highly reactive dicarbonyl compound, has been associated in progressive diabetes with vascular complication. Therefore, we investigated whether hot water extract of Loliolus beka meat (LBM-HWE) presents a preserve effect against MGO-induced cellular damage in human umbilical vein endothelial cells (HUVECs). The LBM-HWE extract showed to inhibit MGO-induced cytotoxicity. Additionally, the LBM-HWE reduced mRNA expression of pro-inflammatory cytokines, and reduced MGO-induced advanced glycation end product (AGEs) formation. Furthermore, LBM-HWE induced glyoxalase-1 mRNA expression and reduced MGO-induced carbonyl protein formation in HUVECs. The results implicate that LBM-HWE has protective ability against MGO-induced HUVECs toxicity by preventing AGEs formation. In conclusion, LBM-HWE could be used as a potential treatment material for the prevention of vascular complications of diabetes.

Keywords

Acknowledgement

The Gachon University research fund was supported for this work by of 2019(GCU-2019-0720). We thank to the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (grant number 2020R1C1C1007712).

References

  1. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  2. Allaman I, Belanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci. 2015;9:23.
  3. Baig MH, Jan AT, Rabbani G, Ahmad K, Ashraf JM, Kim T, et al. Methylglyoxal and advanced glycation end products: insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci Rep. 2017;7:5916. https://doi.org/10.1038/s41598-017-06067-5
  4. Berlanga J, Cibrian D, Guillen I, Freyre F, Alba JS, Lopez-Saura P, et al. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci. 2005;109:83-95. https://doi.org/10.1042/CS20050026
  5. Bezold V, Rosenstock P, Scheffler J, Geyer H, Horstkorte R, Bork K. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency. Aging. 2019;11:5258-75. https://doi.org/10.18632/aging.102123
  6. Cernuda-Morollon E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res. 2006;98:757-67. https://doi.org/10.1161/01.RES.0000210579.35304.d3
  7. Cha SH, Han EJ, Ahn G, Jun HS. Taurine-rich-containing hot water extract of Loliolus beka gray meat scavenges palmitate-induced free radicals and protects against DNA damage in insulin secreting β-cells. Adv Exp Med Biol. 2019;1155:483-95. https://doi.org/10.1007/978-981-13-8023-5_45
  8. Cha SH, Hwang Y, Heo SJ, Jun HS. Diphlorethohydroxycarmalol attenuates methylglyoxal-induced oxidative stress and advanced glycation end product formation in human kidney cells. Oxid Med Cell Longev. 2018;2018:3654095.
  9. Chou CK, Chen SM, Li YC, Huang TC, Lee JA. Low-molecular-weight chitosan scavenges methylglyoxal and Nε -(carboxyethyl)lysine, the major factors contributing to the pathogenesis of nephropathy. SpringerPlus. 2015;4:312. https://doi.org/10.1186/s40064-015-1106-4
  10. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409-17. https://doi.org/10.1084/jem.20081188
  11. Gkogkolou P, Bohm M. Advanced glycation end products: key players in skin aging? Dermato-endocrinol. 2012;4:259-70. https://doi.org/10.4161/derm.22028
  12. Goligorsky MS. Endothelial cell dysfunction: can't live with it, how to live without it. Am J Physiol Renal Physiol. 2005;288:F871-80. https://doi.org/10.1152/ajprenal.00333.2004
  13. Grosso G, Stepaniak U, Micek A, Kozela M, Stefler D, Bobak M, et al. Dietary polyphenol intake and risk of type 2 diabetes in the Polish Arm of the Health, Alcohol and Psychosocial Factors in Eastern Europe (HAPIEE) study. Br J Nutr. 2017;118:60-8. https://doi.org/10.1017/S0007114517001805
  14. Han EJ, Um JH, Kim EA, Lee WW, Kang N, Oh JY, et al. Protective effects of an water extracts prepared from Loliolus beka gray meat against H2O2-induced oxidative stress in Chang liver cells and zebrafish embryo model. Adv Exp Med Biol. 2017;975:585-601. https://doi.org/10.1007/978-94-024-1079-2_46
  15. Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes/Metab Res Rev. 2001;17:330-46. https://doi.org/10.1002/dmrr.229
  16. Hanssen NMJ, Stehouwer CDA, Schalkwijk CG. Methylglyoxal stress, the glyoxalase system, and diabetic chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28:26-33. https://doi.org/10.1097/MNH.0000000000000465
  17. He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. Glyoxalase system: a systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother. 2020;131:110663. https://doi.org/10.1016/j.biopha.2020.110663
  18. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2009;615:252-6. https://doi.org/10.1016/j.ejphar.2009.05.017
  19. Kopytek M, Zabczyk M, Mazur P, Undas A, Natorska J. Accumulation of advanced glycation end products (AGEs) is associated with the severity of aortic stenosis in patients with concomitant type 2 diabetes. Cardiovasc Diabetol. 2020;19:92. https://doi.org/10.1186/s12933-020-01068-7
  20. Kulkarni YA. Diabetes, diabetic complications and natural products. Pharm Crop. 2014;5:9-10. https://doi.org/10.2174/2210290601405010009
  21. Lee WW, Han EJ, Shin EJ, Han HJ, Ahn G, Cha SH. Protective effect of hot water extract of Loliolus Beka gray meat against palmitate-induced HUVEC damage. Adv Exp Med Biol. 2019;1155:717-27. https://doi.org/10.1007/978-981-13-8023-5_62
  22. Nagai R, Shirakawa J, Ohno R, Moroishi N, Nagai M. Inhibition of AGEs formation by natural products. Amino Acids. 2014;46:261-6. https://doi.org/10.1007/s00726-013-1487-z
  23. Park CH, Kim JW. Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean J Ophthalmol. 2012;26:123-31. https://doi.org/10.3341/kjo.2012.26.2.123
  24. Pastor-Belda M, Fernandez-Garcia AJ, Campillo N, Perez-Carceles MD, Motas M, Hernandez-Cordoba M, et al. Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry. J Chromatogr A. 2017;1509:43-9. https://doi.org/10.1016/j.chroma.2017.06.041
  25. Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol. 1999;58:1765-73. https://doi.org/10.1016/S0006-2952(99)00263-4
  26. Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020;100:407-61. https://doi.org/10.1152/physrev.00001.2019
  27. Sena CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P, et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 2012;65:497-506. https://doi.org/10.1016/j.phrs.2012.03.004
  28. Senda M, Ogawa S, Nako K, Okamura M, Sakamoto T, Ito S. The strong relation between post-hemodialysis blood methylglyoxal levels and post-hemodialysis blood glucose concentration rise. Clin Exp Nephrol. 2015;19:527-33. https://doi.org/10.1007/s10157-014-1018-6
  29. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101:1142-7. https://doi.org/10.1172/JCI119885
  30. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
  31. Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2014;3:94-108. https://doi.org/10.1016/j.molmet.2013.11.006
  32. Stratmann B, Engelbrecht B, Espelage BC, Klusmeier N, Tiemann J, Gawlowski T, et al. Glyoxalase 1-knockdown in human aortic endothelial cells - effect on the proteome and endothelial function estimates. Sci Rep. 2016;6:37737. https://doi.org/10.1038/srep37737
  33. Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron. 2015;130:48-53. https://doi.org/10.1159/000381315
  34. Wang Z, Zhang J, Chen L, Li J, Zhang H, Guo X. Glycine suppresses AGE/RAGE signaling pathway and subsequent oxidative stress by restoring Glo1 function in the aorta of diabetic rats and in HUVECs. Oxid Med Cell Longev. 2019;2019:4628962.
  35. Xiao JB, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015;22:23-38. https://doi.org/10.2174/0929867321666140706130807