DOI QR코드

DOI QR Code

Endobiotic microalgae in molluscan life

  • Sokolnikova, Yulia (National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences)
  • Received : 2022.09.25
  • Accepted : 2022.10.11
  • Published : 2022.10.31

Abstract

Endobiotic microalgae inhabit various groups of organisms, including bivalves. In this group, the association between the giant molluscs Tridacna and Symbiodinium is one of the most recognizable. This consortium allows hydrobionts to survive in oligotrophic waters by regulating their metabolism. The available research has provided an understanding of the interaction and adaptation of these symbionts, but the problem of the beginning of the formation of these relationships remains unresolved. In the case of Tridacninae, symbiosis is essential for the survival of bivalves, in contrast to representatives of the Mytilidae and the Coccomyxa found in them. A few works devoted mainly to the morphological aspects of invasion have shown that endobiont causes inflammation and pathology. Having data to clarify the exact "diagnosis" of the interaction of these organisms is not enough. It is possible that the relationship between bivalves and Coccomyxa is in the early stages of being established, which may lead to mutualism or parasitism in the future. We assume that the analysis of works on the symbiosis of Symbiodinium and bivalves will facilitate the course of research for the less studied Coccomyxa and their hosts. By postulating the Coccomyxa represent a unique evolutionary model for the formation of a symbiotic system, it is possible to use this system to study the interaction of organisms during their initial contact. The identified signalling pathways and mechanisms that allow the photobionts to evade host immunity can be useful for constructing new forms of symbiosystems.

Keywords

References

  1. Ambariyanto A. Calculating the contribution of zooxanthellae to giant clams respiration energy requirements. J Coast Dev. 2002;5:101-10.
  2. Ambariyanto A, Hoegh-Guldberg O. Effect of nutrient enrichment in the field on the biomass, growth and calcification of the giant clam Tridacna maxima. Mar Biol. 1997;129:635-42. https://doi.org/10.1007/s002270050206
  3. Baillie BK, Belda-Baillie CA, Maruyama T. Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (dinophyceae) from giant clams. J Phycol. 2008;36:1153-61.
  4. Bala LO. Specificity and prevalence of the endobiosis of Coccomyxa parasitica Chlorophyta Chlorococcales in Mytilus edulis platensis Mollusca Bivalvia. Nat Patag Cienc Biol. 1995; 3:1-9.
  5. Belda CA, Lucas JS, Yellowlees D. Nutrient limitation in the giant clam-zooxanthellae symbiosis: effects of nutrient supplements on growth of the symbiotic partners. Mar Biol. 1993;117:655-64. https://doi.org/10.1007/BF00349778
  6. Belda-Baillie CA, Leggat W, Yellowlees D. Growth and metabolic responses of the giant clam-zooxanthellae symbiosis in a reef-fertilisation experiment. Mar Ecol Prog Ser. 1998;170:131-41. https://doi.org/10.3354/meps170131
  7. Belzile C, Gosselin M. Free-living stage of the unicellular algae Coccomyxa sp. parasite of the blue mussel (Mytilus edulis): low-light adaptation, capacity for growth at a very wide salinity range and tolerance to low pH. J Invertebr Pathol. 2015;132:201-7. https://doi.org/10.1016/j.jip.2015.10.006
  8. Berry PF, Playford PE. Biology of modern Fragum erugatum (Mollusca, Bivalvia, Cardiidae) in relation to deposition of the Hamelin Coquina, Shark Bay, Western Australia. Mar Freshw Res. 1997;48:415-20. https://doi.org/10.1071/MF97005
  9. Boraso-De-Zaixso AL, Zaixso H. Coccomyxa parasitica endozoic in Mytilus edulis. Physis Secc A. 1978;38:131-6.
  10. Buck BH, Rosenthal H, Saint-Paul U. Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas. Aquat Living Resour. 2002;15:107-17. https://doi.org/10.1016/S0990-7440(02)01159-2
  11. Cai S, Mu W, Wang H, Chen J, Zhang H. Sequence and phylogenetic analysis of the mitochondrial genome of giant clam, Tridacna crocea (Tridacninae: Tridacna). Mitochondrial DNA B Resour. 2019;4:1032-3. https://doi.org/10.1080/23802359.2019.1579071
  12. Carlos AA, Baillie BK, Kawachi M, Maruyama T. Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol. 2002;35:1054-62.
  13. Carlos AA, Baillie BK, Maruyama T. Diversity of dinoflagellate symbionts (zooxanthellae) in a host individual. Mar Ecol Prog Ser. 2000;195:93-100. https://doi.org/10.3354/meps195093
  14. Carty S. Dinoflagellates. In: Wehr JD, Sheath RG, editors. Freshwater algae of North America: ecology and classification: a volume in aquatic ecology. San Diego, CA: Academic Press; 2003. p. 685-714.
  15. Coffroth MA, Santos SR. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist. 2005;156:19-34. https://doi.org/10.1016/j.protis.2005.02.004
  16. Cooke WJ. The occurrence of an endozoic green alga in the marine mollusc, Clinocardium nuttallii (Conrad, 1837). Phycologia. 1975;14:35-9. https://doi.org/10.2216/i0031-8884-14-1-35.1
  17. Crespo C, Rodriguez H, Segade P, Iglesias R, Garcia-Estevez JM. Coccomyxa sp. (Chlorophyta: Chlorococcales), a new pathogen in mussels (Mytilus galloprovincialis) of Vigo estuary (Galicia, NW Spain). J Invertebr Pathol. 2009;102:214-9. https://doi.org/10.1016/j.jip.2009.08.010
  18. Davy SK, Allemand D, Weis VM. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev. 2012;76:229-61. https://doi.org/10.1128/MMBR.05014-11
  19. Dolorosa RG, Conales SF, Bundal NA. Shell dimension-live weight relationships, growth and survival of Hippopus porcellanus in tubbataha reefs Natural Park, Philippines. Atoll Res Bull. 2014;604:1-9. https://doi.org/10.5479/si.00775630.604
  20. Domotor SL, D'Elia CF. Cell-size distributions of zooxanthellae in culture and symbiosis. Biol Bull. 1986;170:519-25. https://doi.org/10.2307/1541859
  21. Dubousquet V, Gros E, Berteaux-Lecellier V, Viguier B, Raharivelomanana P, Bertrand C, et al. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biol Open. 2016;5:1400-7. https://doi.org/10.1242/bio.017921
  22. Fankboner PV. Intracellular digestion of symbiontic zooxanthellae by host amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis. Biol Bull. 1971;141:222-34. https://doi.org/10.2307/1540113
  23. Farmer MA, Fitt WK, Trench RK. Morphology of the symbiosis between Corculum cardissa (Mollusca: Bivalvia) and Symbiodinium corculorum (Dinophyceae). Biol Bull. 2001;200:336-43. https://doi.org/10.2307/1543514
  24. Fitt WK, Fisher CR, Trench RK. Larval biology of tridacnid clams. Aquaculture. 1984;39:181-95. https://doi.org/10.1016/0044-8486(84)90265-5
  25. Fitt WK, Fisher CR, Trench RK. Contribution of the symbiotic dinoflagellate Symbiodinium microadriaticum to the nutrition, growth and survival of larval and juvenile tridacnid clams. Aquaculture. 1986;55:5-22. https://doi.org/10.1016/0044-8486(86)90051-7
  26. Fitt WK, Rees TAV, Yellowlees D. Relationship between pH and the availability of dissolved inorganic nitrogen in the zooxanthella-giant clam symbiosis. Limnol Oceanogr. 1995;40:976-82. https://doi.org/10.4319/lo.1995.40.5.0976
  27. Fitt WK, Trench RK. Spawning, development, and acquisition of zooxanthellae by Tridacna squamosa (Mollusca, Bivalvia). Biol Bull. 1981;161:213-35. https://doi.org/10.2307/1540800
  28. Ghoshal A, Eck E, Gordon M, Morse DE. Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams. J R Soc Interface. 2016;13:20160285. https://doi.org/10.1098/rsif.2016.0285
  29. Goetsch W, Scheuring L. Parasitismus und symbiose der algengattung chlorella. Z Morphol Okol Tiere. 1926;7:220-53. https://doi.org/10.1007/BF00540722
  30. Gomez ED, Mingoa-Licuanan SS. Mortalities of giant clams associated with unusually high temperatures and coral bleaching. Reef Encount. 1998;24:23.
  31. Gontier N. Reticulate evolution: symbiogenesis, lateral gene transfer, hybridization and infectious heredity. Cham: Springer; 2015.
  32. Goreau TF, Goreau NI, Yonge CM. On the utilization of photosynthetic products from zooxanthellae and of a dissolved amino acid in Tridacna maxima f. elongata (Mollusca: Bivalvia). J Zool. 1973;169:417-54. https://doi.org/10.1111/j.1469-7998.1973.tb03121.x
  33. Gray AP, Lucas IAN, Seed R, Richardson CA. Mytilus edulis chilensis infested with Coccomyxa parasitica (Chlorococcales, Coccomyxaceae). J Molluscan Stud. 1999;65:289-94. https://doi.org/10.1093/mollus/65.3.289
  34. Grice AM, Bell JD. Application of ammonium to enhance the growth of giant clams (Tridacna maxima) in the land-based nursery: effects of size class, stocking density and nutrient concentration. Aquaculture. 1999;170:17-28. https://doi.org/10.1016/S0044-8486(98)00388-3
  35. Griffiths CL, Klumpp DW. Relationships between size, mantle area and zooxanthellae numbers in five species of giant clam (Tridacnidae). Mar Ecol Prog Ser. 1996;137:139-47. https://doi.org/10.3354/meps137139
  36. Griffiths DJ, Winsor H, Luongvan T. Iridophores in the mantle of giant clams. Aust J Zool. 1992;40:319-26. https://doi.org/10.1071/ZO9920319
  37. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot. 2004;91:1523-34. https://doi.org/10.3732/ajb.91.10.1523
  38. Hartman MC, Pratt I. Infection of the heart cockle, Clinocardium nuttallii, from Yaquina Bay, Oregon, with an endosymbiotic alga. J Invertebr Pathol. 1976;28:291-9. https://doi.org/10.1016/0022-2011(76)90002-1
  39. Hastie LC, Watson TC, Isamu T, Heslinga GA. Effect of nutrient enrichment on Tridacna derasa seed: dissolved inorganic nitrogen increases growth rate. Aquaculture. 1992;106:41-9. https://doi.org/10.1016/0044-8486(92)90248-J
  40. Hernawan UE. Review: symbiosis between the giant clams (Bivalvia: Cardiidae) and zooxanthellae (Dinophyceae). Biodiversitas J Biol Divers. 2008;9:53-58. https://doi.org/10.13057/biodiv/d090112
  41. Hernawan UE. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas J Biol Divers. 2012;13:118-23. https://doi.org/10.13057/biodiv/d130303
  42. Hinde R. Symbioses between aquatic invertebrates and algae. Int J Parasitol. 1987;17:383-90. https://doi.org/10.1016/0020-7519(87)90113-5
  43. Hirose E, Iwai K, Maruyama T. Establishment of the photosymbiosis in the early ontogeny of three giant clams. Mar Biol. 2006;148:551-8. https://doi.org/10.1007/s00227-005-0119-x
  44. Holt AL, Vahidinia S, Gagnon YL, Morse DE, Sweeney AM. Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface. 2014;11:2014067.
  45. Ikeda S, Yamashita H, Kondo SN, Inoue K, Morishima SY, Koike K. Zooxanthellal genetic varieties in giant clams are partially determined by species-intrinsic and growth-related characteristics. PLOS ONE. 2017;12:e0172285. https://doi.org/10.1371/journal.pone.0172285
  46. Ip YK, Hiong KC, Goh EJK, Boo MV, Choo CYL, Ching B, et al. The whitish inner mantle of the giant clam, Tridacna squamosa, expresses an apical plasma membrane Ca2+-ATPase (PMCA) which displays light-dependent gene and protein expressions. Front Physiol. 2017;8:781.
  47. Ishikura M, Adachi K, Maruyama T. Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea. Mar Biol. 1999;133:665-73. https://doi.org/10.1007/s002270050507
  48. Ishikura M, Hagiwara K, Takishita K, Haga M, Iwai K, Maruyama T. Isolation of new Symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Mar Biotechnol. 2004;6:378-85. https://doi.org/10.1007/s10126-004-1800-7
  49. Jameson SC. Early life history of the giant clams Tridacna crocea Lamarck, Tridacna maxima (Roding), and Hippopus hippopus (Linnaeus). Pac Sci. 1976;30:219-33.
  50. Jantzen C, Wild C, El-Zibdah M, Roa-Quiaoit HA, Haacke C, Richter C. Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea. Mar Biol. 2008;155:211-21. https://doi.org/10.1007/s00227-008-1019-7
  51. Jeffrey SW, Haxo FT. Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol Bull. 1968;135:149-65. https://doi.org/10.2307/1539622
  52. Jones DS, Jacobs DK. Photosymbiosis in Clinocardium nuttalli: implications for tests of photosymbiosis in fossil molluscs. Palaios. 1992;7:86-95. https://doi.org/10.2307/3514798
  53. Junchompoo C, Sinrapasan N, Penpain C, Patsorn P. Changing seawater temperature effects on giant clams bleaching, Mannai island, Rayong province, Thailand. In: Proceedings of the Design Symposium on Conservation of Ecosystem; 2013; Bangkok, Thailand.
  54. Kawaguti S. Heart shell Corculum cardissa (L.) and its zooxanthellae. Kagaku Nanyo. 1941;3:45-6.
  55. Kawaguti S. Observations on the heart shell, Corculum cardissa (L.), and its associated zooxanthellae. Pac Sci. 1950;4:43-9.
  56. Kawaguti S. Electron microscopy on the mantle of the giant clam with special reference to zooxanthellae and iridophores. Biol J Okayama Univ. 1966;12:81-92.
  57. Kawaguti S. The third record of association between bivalve mollusks and zooxanthellae. Proc Jpn Acad Ser B. 1983;59:17-20. https://doi.org/10.2183/pjab.59.17
  58. Kirkendale L. Their day in the sun: molecular phylogenetics and origin of photosymbiosis in the 'other' group of photosymbiotic marine bivalves (Cardiidae: Fraginae). Biol J Linn Soc. 2009;97:448-65. https://doi.org/10.1111/j.1095-8312.2009.01215.x
  59. Kirkendale L, ter Poorten JJ, Middelfart P, Carter JG. A new photosymbiotic marine bivalve with window shell microstructure (Fraginae: Bivalvia). Phuket Mar Biol Cent Res Bull. 2021;78:125-38.
  60. Klumpp DW, Lucas JS. Nutritional ecology of the giant clams Tridacna tevoroa and T. derasa from Tonga: influence of light on filter-feeding and photosynthesis. Mar Ecol Prog Ser. 1994;107:147-56. https://doi.org/10.3354/meps107147
  61. Kooistra WHCF, Gersonde R, Medlin LK, Mann DG. The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH, editors. Evolution of primary producers in the sea. London: Academic Press; 2007. p. 207-49.
  62. Lajeunesse TC. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: in search of a "species" level marker. J Phycol. 2001;37:866-80. https://doi.org/10.1046/j.1529-8817.2001.01031.x
  63. Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, Lajeunesse TC. Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur J Phycol. 2015;50:155-72. https://doi.org/10.1080/09670262.2015.1018336
  64. Leggat W, Buck BH, Grice A, Yellowlees D. The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant Cell Environ. 2003;26:1951-61. https://doi.org/10.1046/j.0016-8025.2003.01111.x
  65. Leggat W, Rees TAV, Yellowlees D. Meeting the photosynthetic demand for inorganic carbon in an alga-invertebrate association: preferential use of CO2 by symbionts in the giant clam Tridacna gigas. Proc Biol Sci. 2000;267:523-9. https://doi.org/10.1098/rspb.2000.1031
  66. Li J, Volsteadt M, Kirkendale L, Cavanaugh CM. Characterizing photosymbiosis between Fraginae bivalves and Symbiodinium using phylogenetics and stable isotopes. Front Ecol Evol. 2018;6:45. https://doi.org/10.3389/fevo.2018.00045
  67. Lizano AMD, Santos MD. Updates on the status of giant clams Tridacna spp. and Hippopus hippopus in the Philippines using mitochondrial CO1 and 16S rRNA genes. Philipp Sci Lett. 2014;7:187-200.
  68. Lucas JS. The biology, exploitation, and mariculture of giant clams (Tridacnidae). Rev Fish Sci. 1994;2:181-223. https://doi.org/10.1080/10641269409388557
  69. Lutaenko KA, Noseworthy RG. Catalogue of the living bivalvia of the continental coast of the Sea of Japan (East Sea). Vladivostok: Dalnauka; 2012.
  70. Mansour K. Communication between the dorsal edge of the mantle and the stomach of Tridacna. Nature. 1946;157:844. https://doi.org/10.1038/157844a0
  71. Maruyama T, Heslinga GA. Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Mar Biol. 1997;127:473-7. https://doi.org/10.1007/s002270050035
  72. Mies M, Sumida PYG, Radecker N, Voolstra CR. Marine invertebrate larvae associated with Symbiodinium: a mutualism from the start? Front Ecol Evol. 2017b;5:56. https://doi.org/10.3389/fevo.2017.00056
  73. Mies M, Van Sluys MA, Metcalfe CJ, Sumida PYG. Molecular evidence of symbiotic activity between Symbiodinium and Tridacna maxima larvae. Symbiosis. 2017a;72:13-22. https://doi.org/10.1007/s13199-016-0433-8
  74. Mortensen S, Harkestad LS, Stene RO, Renault T. Picoeucaryot alga infecting blue mussel Mytilus edulis in southern Norway. Dis Aquat Organ. 2005;63:25-32. https://doi.org/10.3354/dao063025
  75. Morton B. The diurnal rhythm and the processes of feeding and digestion in Tridacna crocea (BivaMa: Tridacnidae). J Zool. 1978;185:371-87. https://doi.org/10.1111/j.1469-7998.1978.tb03339.x
  76. Morton B. The biology, functional morphology and taxonomic status of Fluviolanatus subtorta (Bivalvia: Trapeziidae), a heteromyarian bivalve possessing "zooxanthellae". J Malacol Soc Aust. 1982;5:113-40.
  77. Morton B. The biology and functional morphology of Fragum erugatum (Bivalvia: Cardiidae) from Shark Bay, Western Australia: the significance of its relationship with entrained zooxanthellae. J Zool. 2000;251:39-52. https://doi.org/10.1111/j.1469-7998.2000.tb00591.x
  78. Munro JL. FFA: giant clams. In: Wright A, Hill L, editors. Nearshore marine resources of the South Pacific: information for fisheries development and management. Honiara: Forum Fisheries Agency; 1993.
  79. Muscatine L. Productivity of zooxanthellae. In: Falkowski PG, editor. Primary productivity in the sea. Environmental Science Research. New York, NY: Springer; 1980. p. 381-402.
  80. Naidu KS. Infection of the giant scallop Placopecten magellanicus from Newfoundland with an endozoic alga. J Invertebr Pathol. 1971;17:145-57. https://doi.org/10.1016/0022-2011(71)90084-X
  81. Naidu KS, South GR. Occurrence of an endozoic alga in the giant scallop Placopecten magellanicus (Gmelin). Can J Zool. 1970;48:183-5. https://doi.org/10.1139/z70-022
  82. Neo ML, Todd PA, Teo SLM, Chou LM. Can artificial substrates enriched with crustose coralline algae enhance larval settlement and recruitment in the fluted giant clam (Tridacna squamosa)? Hydrobiologia. 2009;625:83-90. https://doi.org/10.1007/s10750-008-9698-0
  83. Norton JH, Jones GW. The giant clam: an anatomical and histological atlas. Canberra: Australian Centre for International Agricultural Research; 1992.
  84. Norton JH, Shepherd MA, Long HM, Fitt WK. The zooxanthellal tubular system in the giant clam. Biol Bull. 1992;183:503-6. https://doi.org/10.2307/1542028
  85. Ohno T, Katoh T, Yamasu T. The origin of algal-bivalve photo-symbiosis. Palaeontology. 1995;38:1-21.
  86. Othman AS, Goh GHS, Todd PA. The distribution and status of giant clams (family Tridacnidae): a short review. Raffles Bull Zool. 2010;58:103-11.
  87. Penny SS, Willan RC. Description of a new species of giant clam (Bivalvia: Tridacnidae) from Ningaloo Reef, Western Australia. Molluscan Res. 2014;34:201-11. https://doi.org/10.1080/13235818.2014.940616
  88. Pochon X, Pawlowski J. Evolution of the soritids-Symbiodinium symbiosis. Symbiosis. 2006;42:77-88.
  89. Pochon X, Putnam HM, Gates RD. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ. 2014;2:e394. https://doi.org/10.7717/peerj.394
  90. Posten C, Walter C. Microalgal biotechnology: potential and production. Berlin: Gruyter; 2012.
  91. Reid RGB, Fankboner PV, Brand DG. Studies on the physiology of the giant clam Tridacna gig as linne-I. feeding and digestion. Comp Biochem Physiol A. 1984;78:95-101. https://doi.org/10.1016/0300-9629(84)90099-9
  92. Rodriguez F, Feist SW, Guillou L, Harkestad LS, Bateman K, Renault T, et al. Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the North and South Atlantic oceans. Dis Aquat Organ. 2008;81:231-40. https://doi.org/10.3354/dao01956
  93. Schneider JA, Carter JG. Evolution and phylogenetic significance of cardioidean shell microstructure (Mollusca, Bivalvia). J Paleontol. 2001;75:607-43. https://doi.org/10.1666/0022-3360(2001)075<0607:EAPSOC>2.0.CO;2
  94. Sokolnikova Y, Magarlamov T, Stenkova A, Kumeiko V. Permanent culture and parasitic impact of the microalga Coccomyxa parasitica, isolated from horse mussel Modiolus kurilensis. J Invertebr Pathol. 2016;140:25-34. https://doi.org/10.1016/j.jip.2016.07.012
  95. Stevenson RN. In vivo and in vitro studies on an endozoic alga from the giant scallop, Placopecten magellanicus (Gmelin) [Master's thesis]. St. John's, NL: Memorial University of Newfoundland; 1972.
  96. Stevenson RN, Robin South G. Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland. Br Phycol J. 1974;9:319-29. https://doi.org/10.1080/00071617400650391
  97. Syasina IG, Kukhlevsky AD, Kovaleva AL, Vaschenko MA. Phylogenetic and morphological characterization of the green alga infesting the horse mussel Modiolus modiolus from Vityaz Bay (Peter the Great Bay, Sea of Japan). J Invertebr Pathol. 2012;111:175-81. https://doi.org/10.1016/j.jip.2012.08.001
  98. Taylor DL. Identity of zooxanthellae isolated from some pacific Tridacnidae. J Phycol. 1969;5:336-40. https://doi.org/10.1111/j.1529-8817.1969.tb02623.x
  99. ter Poorten JJ. The Cardiidae of the Panglao marine biodiversity project 2004 and the Panglao 2005 deep-sea cruise with descriptions of four new species (Bivalvia). Vita Malacol. 2009;8:9-96.
  100. Trench RK, Wethey DS, Porter JW. Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biol Bull. 1981;161:180-98. https://doi.org/10.2307/1541117
  101. Van der Molen S, Kroeck M, Ciocco N. Reproductive cycle of the southern geoduck clam, Panopea abbreviata (Bivalvia: Hiatellidae), in North Patagonia, Argentina. Invertebr Reprod Dev. 2007;50:75-84. https://doi.org/10.1080/07924259.2007.9652230
  102. Vaschenko MA, Kovaleva AL, Syasina IG, Kukhlevsky AD. Reproduction-related effects of green alga Coccomyxa sp. infestation in the horse mussel Modiolus modiolus. J Invertebr Pathol. 2013;113:86-95. https://doi.org/10.1016/j.jip.2013.02.003
  103. Vazquez N, Ituarte C, Cremonte F. A histopathological study of the geoduck clam Panopea abbreviata from San Jose Gulf, North Patagonia, Argentina. J Mar Biol Assoc UK. 2015;95:1173-81. https://doi.org/10.1017/S0025315415000144
  104. Vazquez N, Rodriguez F, Ituarte C, Klaich J, Cremonte F. Host-parasite relationship of the geoduck Panopea abbreviata and the green alga Coccomyxa parasitica in the Argentinean Patagonian coast. J Invertebr Pathol. 2010;105:254-60. https://doi.org/10.1016/j.jip.2010.07.005
  105. Verma V, Bhatti S, Huss VAR, Colman B. Photosynthetic inorganic carbon acquisition in an acid-tolerant, free-living species of Coccomyxa (Chlorophyta). J Phycol. 2009;45:847-54. https://doi.org/10.1111/j.1529-8817.2009.00718.x
  106. Vermeij GJ. The evolution of molluscan photosymbioses: a critical appraisal. Biol J Linn Soc. 2013;109:497-511. https://doi.org/10.1111/bij.12095
  107. Villalba A, Mourelle SG, Carballal MJ, Lopez C. Symbionts and diseases of farmed mussels Mytilus galloprovincialis throughout the culture process in the Rias of Galicia (NW Spain). Dis Aquat Organ. 1997;31:127-39. https://doi.org/10.3354/dao031127
  108. Wiborg KF. Investigations on the oyster shell (Modiola modiolus (L.)): I. General biology, growth and economic importance. Bergen: John Griegs Boktrykkeri; 1946. p. 5-85.
  109. Wilkerson FP, Trench RK. Uptake of dissolved inorganic nitrogen by the symbiotic clam Tridacna gigas and the coral Acropora sp. Mar Biol. 1986;93:237-46. https://doi.org/10.1007/BF00508261
  110. Yellowlees D, Rees TAV, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 2008;31:679-94. https://doi.org/10.1111/j.1365-3040.2008.01802.x
  111. Yonge CM. Mantle chambers and water circulation in the Tridacnidae (Mollusca). Proc Zool Soc Lond. 1953;123:551-62. https://doi.org/10.1111/j.1096-3642.1953.tb00187.x
  112. Yonge CM. Functional morphology and evolution in the Tridacnidae (Mollusca: Bivalvia: Cardiacea). Rec Aust Mus. 1981;33:735-77. https://doi.org/10.3853/j.0067-1975.33.1981.196
  113. Zahl PA, McLaughlin JJA. Isolation and cultivation of zooxanthellae. Nature. 1957;180:199-200. https://doi.org/10.1038/180199a0
  114. Zuykov M, Anderson J, Archambault P, Dufresne F, Pelletier E. Mytilus trossulus and hybrid (M. edulis-M. trossulus) - new hosts organisms for pathogenic microalgae Coccomyxa sp. from the Estuary and northwestern Gulf of St. Lawrence, Canada. J Invertebr Pathol. 2018a;153:145-6. https://doi.org/10.1016/j.jip.2018.02.017
  115. Zuykov M, Anderson J, Pelletier E. Does photosynthesis provoke formation of shell deformity in wild mytilid mussels infested with green microalgae Coccomyxa? - a conceptual model and research agenda. J Exp Mar Biol Ecol. 2018b;505:9-11. https://doi.org/10.1016/j.jembe.2018.04.003
  116. Zuykov M, Belzile C, Lemaire N, Gosselin M, Dufresne F, Pelletier E. First record of the green microalgae Coccomyxa sp. in blue mussel Mytilus edulis (L.) from the Lower St. Lawrence Estuary (Quebec, Canada). J Invertebr Pathol. 2014;120:23-32. https://doi.org/10.1016/j.jip.2014.05.001