참고문헌
- Gerard A, Buyse M, Nordlinger B, Loygue J, Pene F, Kempf P, Bosset JF, Gignoux M, Arnaud JP, Desaive C. Preoperative radiotherapy as adjuvant treatment in rectal cancer. Final results of a randomized study of the European Organization for Research and Treatment of Cancer (EORTC). Annals of surgery. 1988;208(5):606-614. https://doi.org/10.1097/00000658-198811000-00011
- Lei Chen, Hong Song, Chi Wang, Yutao Cui, Jian Yang, Xiaohua Hu, Le Zhang. Liver tumor segmentation in CT volumes using an adversarial densely connected network. BMC bioinformatics. 2019;20.16:1-13. https://doi.org/10.1186/s12859-018-2565-8
- Yuka Urago, Hiroyuki Okamoto, Tomoya Kaneda, Naoya Murakami, Tairo Kashihara, Mihiro Takemori, Hiroki Nakayama, Kotaro Iijima, Takahito Chiba, Junichi Kuwahara, Shouichi Katsuta, Satoshi Nakamura, Weishan Chang, Hidetoshi Saitoh, Hiroshi Igaki. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models. Radiation Oncology. 2021;16.1:1-13. https://doi.org/10.1186/s13014-020-01701-5
- Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nature reviews. Disease primers. 2021;7(1):6. https://doi.org/10.1038/s41572-020-00240-3
- Hyunseok Seo, Charles Huang, Maxime Bassenne; Ruoxiu Xiao, Lei Xing. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE transactions on medical imaging. 2019;39(5):1316-1325.
- Jean-Francois Daisne & Andreas Blumhofer. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation. Radiation oncology. 2013;8(1):1-11. https://doi.org/10.1186/1748-717X-8-1
- Shalini K. Vinod, Michael G. Jameson, Myo Min, Lois C. Holloway. Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiotherapy and Oncology 2016;121(2):169-179. https://doi.org/10.1016/j.radonc.2016.09.009
- Elif Deryaubeyli. Implementing automated diagnostic systems for breast cancer detection. Expert systems with Applications. 2007;33(4):1054-1062. https://doi.org/10.1016/j.eswa.2006.08.005
- Berkman Sahiner, Aria Pezeshk, Lubomir M. Hadjiiski, Xiaosong Wang, Karen Drukker, Kenny H. Cha, Ronald M. Summers, Maryellen L. Giger. Deep learning in medical imaging and radiation therapy. Medical physics. 2019;46(1):1-36. https://doi.org/10.1002/mp.13201
- Jonathan Long, Evan Shelhamer, Trevor Darrell. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015;3431-3440.
- Holger R. Roth, Hirohisa Oda, Xiangrong Zhou, Natsuki Shimizu, Ying Yang, Yuichiro Hayashi, Masahiro Oda, Michitaka Fujiwara, Kazunari Misawa, Kensaku Mori. An application of cascaded 3D fully convolutional networks for medical image segmentation. Computerized Medical Imaging and Graphics. 2018;66: 90-99. https://doi.org/10.1016/j.compmedimag.2018.03.001
- Patrick Ferdinand Christ, Mohamed Ezzeldin A. Elshaer, Florian Ettlinger, Sunil Tatavarty, Marc Bickel, Patrick Bilic, Markus Rempfler, Marco Armbruster, Felix Hofmann, Melvin D'Anastasi, Wieland H. Sommer, Seyed-Ahmad Ahmadi, Bjoern H. Menze. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. International conference on medical image computing and computer-assisted intervention. 2016;9901:415-423.
- Peijun Hu, Fa Wu, Jialin Peng, Yuanyuan Bao, Feng Chen, Dexing Kong. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. International journal of computer assisted radiology and surgery, 2017;12(3):399-411. https://doi.org/10.1007/s11548-016-1501-5
- Meg F. Bobo, Shunxing Bao, Yuankai Huo, Yuang Yao, Jack Virostko, Andrew J. Plassard, Ilwoo Lyu, Albert Assad, Richard G. Abramson, Melissa A. Hilmes, Bennett A. Landman. Fully convolutional neural networks improve abdominal organ segmentation. Medical Imaging 2018;10574:750-757.
- Lei Bi, Jinman Kim, Ashnil Kumar, Dagan Feng. Automatic liver lesion detection using cascaded deep residual networks. arXiv preprint arXiv. 2017;1704.02703.
- Yading Yuan. Hierarchical convolutional-deconvolutional neural networks for automatic liver and tumor segmentation. arXiv preprint arXiv. 2017;1710.04540.
- Krishna Chaitanya Kaluva, Mahendra Khened, Avinash Kori, Ganapathy Krishnamurthi. 2D-densely connected convolution neural networks for automatic liver and tumor segmentation. arXiv preprint arXiv. 2018;1802.02182.
- Tongle Fan, Guanglei Wang, Yan Li, Hongrui Wang. Ma-net: A multi-scale attention network for liver and tumor segmentation. IEEE Access. 2020;8:179656-179665. https://doi.org/10.1109/ACCESS.2020.3025372
- Patrick Bilic, Patrick Ferdinand Christ, Eugene Vorontsov, Grzegorz Chlebus, Hao Chen, Qi Dou, Chi-Wing Fu, Xiao Han, Pheng-Ann Heng, Jurgen Hesser, Samuel Kadoury, Tomasz Konopczynski, Miao Le, Chunming Li, Xiaomeng Li, Jana Lipkova, John Lowengrub, Hans Meine, Jan Hendrik Moltz, Chris Pal, Marie Piraud, Xiaojuan Qi, Jin Qi, Markus Rempfler, Karsten Roth, Andrea Schenk, Anjany Sekuboyina, Eugene Vorontsov, Ping Zhou, Christian Hulsemeyer, Marcel Beetz, Florian Ettlinger, Felix Gruen, Georgios Kaissis, Fabian Lohofer, Rickmer Braren, Julian Holch, Felix Hofmann, Wieland Sommer, Volker Heinemann, Colin Jacobs, Gabriel Efrain Humpire Mamani, Bram van Ginneken, Gabriel Chartrand, An Tang, Michal Drozdzal, Avi Ben-Cohen, Eyal Klang, Marianne M. Amitai, Eli Konen, Hayit Greenspan, Johan Moreau, Alexandre Hostettler, Luc Soler, Refael Vivanti, Adi Szeskin, Naama Lev-Cohain, Jacob Sosna, Leo Joskowicz, Bjoern H. Menze. The liver tumor segmentation benchmark (lits). arXiv preprint arXiv., 2019;1901.04056. https://doi.org/10.1016/j.media.2022.102680
- Nasser Alalwan, Amr Abozeid, AbdAllah A. ElHabshy, Ahmed Alzahrani. Efficient 3D deep learning model for medical image semantic segmentation. Alexandria Engineering Journal, 2021;60(1):1231-1239. https://doi.org/10.1016/j.aej.2020.10.046
- Amit Pandey, Achin Jain. Comparative analysis of KNN algorithm using various normalization techniques. International Journal of Computer Network and Information Security. 2017;9(11):36.
- Marcin Kociolek, Michal Strzelecki, Rafal Obuchowicz. Does image normalization and intensity resolution impact texture classification?. Computerized Medical Imaging and Graphics. 2020;81:101716. https://doi.org/10.1016/j.compmedimag.2020.101716
- El Jurdi R, Petitjean C, Honeine P, Abdallah F. CoordConvUnet: Investigating CoordConv for Organ Segmentation. IRBM. 2021;42(6):415-423. https://doi.org/10.1016/j.irbm.2021.03.002
- Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar. Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision. 2017;2980-2988.
- Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, Ali Gholipour. Tversky loss function for image segmentation using 3D fully convolutional deep networks. International workshop on machine learning in medical imaging. 2017;10541:379-387.