DOI QR코드

DOI QR Code

Research on the Lesion Classification by Radiomics in Laryngoscopy Image

후두내시경 영상에서의 라디오믹스에 의한 병변 분류 연구

  • Park, Jun Ha (Department of Biomedical Eng., College of Health & Sci., Gachon University) ;
  • Kim, Young Jae (Department of Biomedical Eng., College of Health & Sci., Gachon University) ;
  • Woo, Joo Hyun (Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University School of Medicine, Gil Medical Center) ;
  • Kim, Kwang Gi (Department of Biomedical Eng., College of Health & Sci., Gachon University)
  • 박준하 (가천대학교 보건과학대학 의용생체공학과) ;
  • 김영재 (가천대학교 보건과학대학 의용생체공학과) ;
  • 우주현 (가천대길병원 이비인후과) ;
  • 김광기 (가천대학교 보건과학대학 의용생체공학과)
  • Received : 2022.08.22
  • Accepted : 2022.10.22
  • Published : 2022.10.31

Abstract

Laryngeal disease harms quality of life, and laryngoscopy is critical in identifying causative lesions. This study extracts and analyzes using radiomics quantitative features from the lesion in laryngoscopy images and will fit and validate a classifier for finding meaningful features. Searching the region of interest for lesions not classified by the YOLOv5 model, features are extracted with radionics. Selected the extracted features are through a combination of three feature selectors, and three estimator models. Through the selected features, trained and verified two classification models, Random Forest and Gradient Boosting, and found meaningful features. The combination of SFS, LASSO, and RF shows the highest performance with an accuracy of 0.90 and AUROC 0.96. Model using features to select by SFM, or RIDGE was low lower performance than other things. Classification of larynx lesions through radiomics looks effective. But it should use various feature selection methods and minimize data loss as losing color data.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업(IITP-2022-2017-0-01630)과 경기도의 경기도 지역협력연구센터 사업의 일환으로 수행하였음[GRRC-가천2020(B01), AI기반 의료영상분석].

References

  1. Cohen SM, Dupont WD, Courey MS. Quality-of-life impact of non-neoplastic voice disorders: a meta-analysis. Annals of Otology, Rhinology & Laryngology. 2006;115(2):128-134. https://doi.org/10.1177/000348940611500209
  2. Kim JO, Lim SE, Park SY, Choi SH, Choi JN, Choi HS. Validity and reliability of Korean-version of voice handicap index and voice-related quality of life. Speech Sciences. 2007;14(3):111-125.
  3. Ni XG, He S, Xu ZG, Gao L, Lu N, Yuan Z Lai S-Q, Zhang T-M, Yi J-L, Wang X-L. Endoscopic diagnosis of laryngeal cancer and precancerous lesions by narrow band imaging. The Journal of Laryngology & Otology. 2010;125(3):288-296.
  4. Lee SH. Diagnostic Role of Stroboscopy. Journal of the Korean Society of Laryngology. Phoniatrics and Logopedics. 2010;21(1):13-16.
  5. Chu EA, Kim YJ. "Laryngeal cancer: diagnosis and preoperative work-up". Otolaryngologic Clinics of North America. 2008;41(4):673-695. https://doi.org/10.1016/j.otc.2008.01.016
  6. Ren J, Jing X, Wang J, Ren X, Xu Y, Yang Q, Ma L, Sun Y, Xu W, Yang N, Zou J, Zheng Y, Chen M, Gan W, Xiang T, An J, Liu R, Lv C, Lin K, Zheng X, Lou F, Rao Y, Yang Hui, Liu Kai, Liu G, Lu T, Zheng X, Zhao Y. Automatic recognition of laryngoscopic images using a deep-learning technique. The Laryngoscope. 2020;130(11):E686-E693.
  7. Cho WK, Choi SH. Comparison of convolutional neural network models for determination of vocal fold normality in laryngoscopic images. Journal of Voice. 2020;36(5):590-598.
  8. Xiong H, Lin P, Yu JG, Ye J, Xiao L, Tao Y, Jiang Z, Lin W, Liu M, Xu J, Hu W, Lu Y, Liu H, Li Y, Zheng Y, Yang H. Computeraided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images. EBioMedicine. 2019;48:92-99. https://doi.org/10.1016/j.ebiom.2019.08.075
  9. Azam MA, Sampieri C, Loppi A, Africano S, Vallin A, Mocellin D, Fragale M, Guastini L, Moccia S, Piazza C, Mattos L, Peretti G. Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection. The Laryngoscope. 2021;132(9):1798-1806.
  10. Ye G, Du C, Lin T, Yan Y, Jiang J. Deep Learning for Laryngopharyngeal Reflux Diagnosis. Applied Sciences. 2021;11(11):4753. https://doi.org/10.3390/app11114753
  11. Onji K, Yoshida S, Tanaka S, Kawase R, Takemura Y, Oka S, Tamaki T, Raytchev B, Kaneda K, Yoshihara M, Chayama K. Quantitative analysis of colorectal lesions observed on magnified endoscopy images. J Gastroenterol. 2011;46:1382-1390. https://doi.org/10.1007/s00535-011-0459-x
  12. Sainju S, Bui FM, Wahid K. Bleeding detection in wireless capsule endoscopy based on color features from histogram probability. 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) IEEE. 2013;1-4
  13. Vu DH, Nguyen LT, Nguyen VT, Tran TH, Dao VH, Vu H. Boundary delineation of reflux esophagitis lesions from endoscopic images using color and texture. 2021 International Conference on Multimedia Analysis and Pattern. 2021;1-6.
  14. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Foster K, Aerts HJWL, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ. Radiomics: the process and the challenges. Magnetic Resonance Imaging. 2012;30(9):1234-1248. https://doi.org/10.1016/j.mri.2012.06.010
  15. Griethuysen JJMV, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer research. 2017;77(21):e104-e107. https://doi.org/10.1158/0008-5472.CAN-17-0339
  16. Machicado JD, Koay EJ, Krishna SG. Radiomics for the Diagnosis and Differentiation of Pancreatic Cystic Lesions. Diagnostics. 2020;10(7):505. https://doi.org/10.3390/diagnostics10070505
  17. Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Physics in Medicine & Biology. 2016;61(13):R150. https://doi.org/10.1088/0031-9155/61/13/R150
  18. Liang C, Huang Y, He L, Chen X, Ma Z, Dong D, Tian J, Liang C, Liu Z. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage III and stage III-IV colorectal cancer. Oncotarget. 2016;7(21):31401-31412. https://doi.org/10.18632/oncotarget.8919
  19. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F. Radiomics-based prognosis analysis for non-small cell lung cancer. Scientific reports. 2017;7(1):1-8. https://doi.org/10.1038/s41598-016-0028-x
  20. Coroller TP, Grossmann P, Hou Y, Velazquez ER, Leijenaar RTH, Hermann G, Lambin P, Haibe-Kains B, Mak RH, Aerts HJWL. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiotherapy and Oncology. 2015;114(3)345-350. https://doi.org/10.1016/j.radonc.2015.02.015
  21. Kniep HC, Madesta F, Schneider T, Hanning U, Schonfeld MH, Schon G, Fiehler J, Gauer T, Werner R, Gellissen S. Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology. 2019;290(2):479-487. https://doi.org/10.1148/radiol.2018180946
  22. Kandemirli SG, Chopra S, Pyiya S, Ward C, Locke T, Soni N, Srivastava S, Jones K, Bathla G. Presurgical detection of brain invasion status in meningiomas based on first-order histogram-based texture analysis of contrast enhanced imaging. Clinical neurology and neurosurgery. 2020;198:106205. https://doi.org/10.1016/j.clineuro.2020.106205
  23. Mohanaiah P, Sathyanarayana P, GuruKumar I. Image texture feature extraction using GLCM approach. International journal of scientific and research publications. 2013;3(5):1-5.
  24. Ahmadi N, Akbarizadeh G. Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Computing and Applications. 2020;32(7):2267-2281. https://doi.org/10.1007/s00521-018-3754-0
  25. Sohail ASM, Bhattacharya P, Mudur SP, Krishnamurthy S. Local relative GLRLM-based texture feature extraction for classifying ultrasound medical images. 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE). 2011;001092-001095.
  26. Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: Application to DNA chromatin and microtubule network classification. 2011 18th IEEE International Conference on Image Processing. 2011;53-56.
  27. Amadasun M, King R. Textural features corresponding to textural properties. in IEEE Transactions on Systems, Man, and Cybernetics. 1989;19(5):1264-1274. https://doi.org/10.1109/21.44046
  28. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, Vanderplas J, Joly A, Varoquaux G. API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv. 2013;1309.0238.
  29. Chandrashekar G, Sahin F. A survey on feature selection methods. Computers & Electrical Engineering. 40.1 (2014):16-28. https://doi.org/10.1016/j.compeleceng.2013.11.024
  30. https://scikit-learn.org/stable/modules/feature_selection.html, Accessed on 29 Jun 2022.
  31. https://scikit-learn.org/stable/modules/linear_model.html. Accessed on 1 Aug 2022.
  32. McDonald GC. Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics. 2009;1(1):93-100. https://doi.org/10.1002/wics.14
  33. https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html sklearn.svm.LinearSVC. Accessed on 30 Jun 2022.
  34. Biau G, Scornet E. A random forest guided tour. TEST. 2016;25:197-227. https://doi.org/10.1007/s11749-016-0481-7
  35. Natekin A, and Knoll A. Gradient boosting machines, a tutorial. Frontiers in neurorobotics. 2013;7:21.
  36. Antoine AA. The student's t-test: a brief description. Research & Reviews: Journal of Hospital and Clinical Pharmacy. 2019;5(1):1.
  37. https://pyradiomics.readthedocs.io/en/latest/features.html. Accessed on 4 Jul 2022.
  38. Mazor T, et al. Intratumoral heterogeneity of the epigenome. Cancer cell. 2016;29(4):440-451. https://doi.org/10.1016/j.ccell.2016.03.009
  39. Aerts HJWL, Pankov A, Song JS, Costello JF. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications. 2014;5(1):1-9.