DOI QR코드

DOI QR Code

생성된 유량자료를 활용한 미계측유역 극한 홍수 범위 일반화

Generalization of the Extreme Floods for Various Sizes of Ungauged Watersheds Using Generated Streamflow Data

  • 양지팽 (원광대학교 건설환경공학과) ;
  • 정용 (원광대학교 건설환경공학과)
  • 투고 : 2022.08.05
  • 심사 : 2022.09.13
  • 발행 : 2022.10.01

초록

다양한 크기 유역에 대한 극한 홍수 규모 산정은 대규모 하천유량 자료를 필요로 한다. 하지만, 중소규모 유역의 경우 관측 지점의 부족으로 인해 하천유량 자료가 부족하다. 본 연구는 하천 유량 확장방법(Streamflow Propagation Method: SPM)과 비홍수량(specific flood distribution) 분석법을 적용하여 측정값이 없는 중소 규모 유역에 대한 하천유량 자료를 생성하여 극한 홍수 규모의 범위를 평가하고 일반화를 시도하였다. 이를 위해 충주댐(CJD), 섬진댐(SJD), 안동댐(ADD)의 미계측 중소규모 유역을 연구지역으로 선정하였다. 비홍수량의 범위는 유역의 크기가 증가함에 따라 감소하였으며 같은 크기 유역의 경우 유역의 크기와 지형에 따라서 비홍수량의 범위가 다양해질 수 있음을 보였다. 비홍수량의 최대와 최소치의 경향성을 비교하기 위해 다양한 포락선(Creager-, Kovacs-, and Francou-Rodier Envelop Curves; and Korean Specific Flood Method)을 활용하였는데, Creager곡선이 비홍수량 규모 대표성을 잘 나타내었다. 하지만, 3개 유역 자료를 통합 후 만들어낸 일반화 포락선식의 경우 Creager 폭락선보다 정확한 대표성을 나타내었다.

To know the magnitudes of extreme floods for various sizes of watersheds, massive streamflow data is fundamentally required. However, small/medium-size watersheds missed streamflow data because of the lack of gauge stations. In this study, the Streamflow Propagation Method (SPM) was applied to generate streamflow data for small/medium size watersheds with no measurements. Based on the generated streamflow data for ungauged watersheds at three different locations (i.e., Chungju Dam (CJD), Seomjin Dam (SJD), and Andong Dam (ADD) watersheds), the scale ranges of extreme floods were evaluated for different sizes of ungauged watersheds by using the specific flood distribution analysis. As a general result, a range of specific floods decreases with increasing watershed size. The distribution of the specific flood in the same size of a watershed possibly depends on the size and topography of the watershed area. The delivered equations were compared to show the relations between the specific flood and sizes of watersheds. In the comparisons of equations, the Creager envelope curve has the higher potential to represent the maximum flood distribution for each watershed. For the generalization of the maximum flood distribution for three watersheds, optimized envelop curves are obtained with lower RMSE than that of Creager envelope curve.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1A2C1092215). Specially thanks to the K-water for the model support (COSFIM).

참고문헌

  1. Biondic, D., Barbalic, D. and Petras, J. (2007). "Creager and Francou-Rodier envelope curves for extreme floods in the Danube River basin in Croatia." In Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 20-22 November 2002). IAHS Publ, Vol. 309, Brasilia, Brazil, pp. 221-228.
  2. Creager, W. P., Hinds, J. and Justin, J. D. (1945). Engineering for Dams, By William P. Creager, Joel D. Justin and Julian Hinds, Etc. John Wiley & Sons, New Jersey, USA.
  3. Furey, P. R. and Gupta, V. K. (2005). "Effects of excess rainfall on the temporal variability of observed peak-discharge power laws." Advances in Water Resources, Vol. 28, No. 11, pp. 1240-1253. https://doi.org/10.1016/j.advwatres.2005.03.014
  4. Furey, P. R. and Gupta, V. K. (2007). "Diagnosing peak-discharge power laws observed in rainfall-runoff events in Goodwin Creek experimental watershed." Advances in Water Resources, Vol. 30, No. 11, pp. 2387-2399. https://doi.org/10.1016/j.advwatres.2007.05.014
  5. Gitau, M. W. and Indrajeet C. (2010). "Regionalization of SWAT model parameters for use in ungauged watersheds." Water, Vol. 2, No. 4, pp. 849-871. https://doi.org/10.3390/w2040849
  6. Hermanovsky, M., Havlicek, V., Hanel, M. and Pech, P. (2017). "Regionalization of runoff models derived by genetic programming." Journal of Hydrology, Vol. 547, pp. 544-556. https://doi.org/10.1016/j.jhydrol.2017.02.018
  7. Kim, N. W., Jung, Y. and Lee, J. E. (2019). "Spatial propagation of streamflow data in ungauged watersheds using a lumped conceptual model." Journal of Water and Climate Change, Vol. 10, No. 1, pp. 89-101. https://doi.org/10.2166/wcc.2018.059
  8. Kim, N. W., Kim, K. H. and Jung, Y. (2021). "Spatial recognition of regional maximum floods in ungauged watersheds and investigations of the influence of rainfall." Atmosphere, Vol. 12, No. 7, pp. 800. https://doi.org/10.3390/atmos12070800
  9. Kimura, T. (1961). The flood runoff analysis method by the storage function model, The Public Works Research Institute, Ministry of Construction, Japan.
  10. Kovacs, Z. (1988). Regional maximum flood peaks in Southern Africa. Department of Water Affairs, Pretoria, Technical Report TR137.
  11. Marechal, J. C., Ladouche, B. and Dorfliger, N. (1997). Karst flash flood in a Mediterranean karst, the case of Fontaine de Nimes, BRGM, Water Department, 1039 rue de Pinville, 34 000 Montpellier, France.
  12. McDonnell, J. J. and Beven, K. (2014). "Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph." Water Resources Research, Vol. 50, No. 6, pp. 5342-5350. https://doi.org/10.1002/2013WR015141
  13. Merz, R. and Bloschl, G. (2004). "Regionalisation of catchment model parameters." Journal of Hydrology, Vol. 287, No. 1-4, pp. 95-123. https://doi.org/10.1016/j.jhydrol.2003.09.028
  14. Nash, J. E. and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  15. Oudin, L., Andreassian, V., Perrin, C., Michel, C. and Le Moine, N. (2008). "Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments." Water Resources Research, Vol. 44, No. 3.
  16. Tran, Q. Q., De Niel, J. and Willems, P. (2018). "Spatially distributed conceptual hydrological model building: A generic top-down approach starting from lumped models." Water Resources Research, Vol. 54, No. 10, pp. 8064-8085. https://doi.org/10.1029/2018WR023566
  17. Wagener, T., Wheater, H. and Gupta, H. V. (2004). "Rainfall-streamflow modelling in gauged and ungauged catchments." World Scientific, Vol. 26, pp. 145-168.
  18. Water Environment Information System (2022). Available at: https://water.nier.go.kr/ (Accessed: June 16, 2022).
  19. Zhao, R. J. and Liu, X. R. (1995). The Xinanjiang model, Computer Models of Watershed Hydrology, Water Resource Publications, LLC, Colorado, USA. , pp. 215-232.